See also the complete list of publications.
Qualitative models of intramolecular dynamics of acetylene:
relation between the bending polyads of acetylene and perturbed Keplerian systems.
Mol. Phys. 116, 23-24, 3564-3601 (2018).
Topological phase transition in
molecular Hamiltonian with symmetry and pseudo-symmetry, studied through
quantum, semi-quantum and classical models
arXive quant-ph. 1703.04472, (2017) 37 pages
Chern number modification in crossing the
boundary between different band structures: Three-band model with cubic symmetry
Rev. Math. Phys. 29, 1750004 (2017) [91 pages]
DOI: http://dx.doi.org/10.1142/S0129055X17500040
Nikolai N. Nekhoroshev
Regular and Chaotic Dinamics, 21, No 6, 593-598 (2016)
Band rearrangement through the 2D-Dirac equation:
comparing the APS and the chiral bag boundary conditions
Indag. Math. 27, 1081-1106 (2016)
Change in energy eigenvalues against parameters
Geometric Methods in Physics. XXXIV Workshop, Bialoweza,
Poland, June 28 - July 4 2015, Springer, 2016, pp. 233-253
Symbolic Interpretation of the Molien Function: Free and Non-free Modules of Covariants
Geometric Methods in Physics. XXXIV Workshop, Bialoweza,
Poland, June 28 - July 4 2015, Springer, 2016, pp. 105-114
Introduction to Louis Michel's lattice geometry through group action.
EDP Sciences, CNRS Editions, 2015, 270 pp.
ISBN EDP Sciences: 978-2-7598-1738-2 .
draft
On the number of k-faces of primitive parallelohedra
Acta Crystallographica Section A: Foundations and Advances, (2015),
Volume A71, pages 212-215
Local description of band rearrangements.
Comparison of semi-quantum and full quantum approach
arXiv:1407.4892 (2014); Acta Appl. Math, (2015)
137, 97-121; DOI:10.1007/s10440-014-9991-y
Topological phase transitions in the
vibration-rotation dynamics of an isolated molecule
Theoret. Chem. Accounts, 133, 1501 (2014)
Symmetries in Nature. The Scientific heritage of Louis Michel.
World Scientific, 2014, 400pp. ISBN: 978-981-4551-36-6
The action of the special orthogonal group
on planar vectors: integrity basis via a generalilzation of the symbolic
interpretation of Molien functions
J. Phys. A 48 035201 (19 pages) (2015)
Qualitative features of the rearrangement of molecular
energy spectra from a ``wall-crossing'' perspective.
Phys. Lett. A 377 (2013) 2481-2486
DOI: 10.1016/j.physleta.2013.07.043
The action of the orthogonal group on planar vectors:
invariants, covariants and syzygies.
J. Phys. A 46 (2013) 455202
Rearrangement of Energy Bands: Chern numbers
in the Presence of Cubic symmetry.
Acta Appl. Math. 120, 153-175 (2012)
Energy bands: Chern numbers and symmetry.
Ann. Phys. (N.Y) 326, 3013-3066 (2011).
Symetrie dans la nature,.
PUG, Grenoble, 2011.
Monodromy and complexity of quantum systems
in: The Complexity of Dynamical Systems: A Multi-disciplinary Perspective.
Eds. J. Dubbeldam, K. Green, and D. Lenstra, Wiley, Singapore, 2011, p.159-181.
Generating functions for effective Hamiltonians.
Symmetry, topology, combinatorics
Physics of Atomic Nuclei, 75, 109-117 (2012).
Reflextions on university education: soviet and french organization of teaching.
Ross. Khim. Zhurnal (Zhurnal Ross. Khim. ob-va im. D.I. Mendeleeva) 55, N 4, 97--105 (2011).
In Russian. English translation: Russian Journal of General Chemistry, 83, No.3, 604-613 (2013).
Quantum monodromy and pattern formation,
J.Phys. A Math. Gen. 43, 434033 (2010).
Hamiltonian monodromy, its manifestations
and generalizations
Proceedings ``Geometric mechanics`` workshop, Kyoto december
2009, RIMS Kokyuroku 1692, 57--77 (2010).
Dynamical manifestations of Hamiltonian
monodromy
Ann. Phys. (N.Y.) 324, 1953-1982 (2009)
Quantum Bifurcations.
In Meyers, Robert (Ed.) Encyclopedia of Complexity and Systems Science,
Springer New York 2009, Part 17, Pages 7135-7154; In Mathematics of complexity and
dynamical systems, 2011, 1438 - 1456. DOI: 10.1007/978-1-4614-1806-1_91
Nikolai Nikolaevich Nekhoroshev. Obituary
UMN, 64, 174-178 (2009)
Classical and quantum fold catastrophe in the presence
of axial symmetry
Phys. Rev A, 78, 052117 (2008)
Generating functions for effective
Hamiltonians via the symmetrised Hadamard product
J.Phys. A: Math.Theor. 41, 382004-1-9 (2008)
Rearrangement of energy bands. Topological aspects..
J. Math. Chem. 44 (4) , 1009-1022 (2008), DOI: 10.1007/s10910-008-9359-6
Dynamical manifestation of Hamiltonian
monodromy
Europhys. Letters, 83, 24003-1-6 (2008)
Generalization of Hamiltonian monodromy. Quantum
manifestations
Symmetry and Perturbation Theory. Proceedings of the International
Conference, Otranto, Italy 2-9 June 2007, ed. G. Gaeta, R. Vitolo, S. Walcher,
World Scientifique, (2007)
Fractional monodromy in systems with coupled
angular momenta
J.Phys. A: Math.Theor. 40, 13075--13089 (2007)
Classification of perturbations of the hydrogen atom by small
static electric and magnetic fields
Proc. R. Soc. A 463 (2083) 1771--90 (2007)
Hamiltonian systems with detuned 1:1:2 resonance.
Manifestation of bidromy
Ann.Phys. (N.Y) 322, 164--200 (2007)
Qualitative Analysis of the Classical and Quantum
Manakov Top .
SIGMA 3, (2007) 046, 23 pages
Fractional Hamiltonian monodromy.
Ann. Henri Poincare. 7, 1099--1211 (2006).
Hamiltonian monodromy as lattice defect.
in: Topology in
Condensed Matter, (Springer Series in Solid-State
Sciences, Vol. 150), 2006, pp. 165-186.
Quantum monodromy, its generalizations and molecular
manifestations..
Mol. Phys. 104(16-17), 2595-2615 (2006)
Interpretation of quantum Hamiltonian monodromy
in terms of lattice defects.
Acta Appl. Math. 87, 281-307 (2005)
Defects of quantum state lattice and assignment of
spectra.
Proceedings of ICGTMP 25, Mexico 2004 ,
Ed. G.S.Pogosyan, L.E.Vicent, K.B.Wolf, Institute of Physics,
Conference Series Number 185, pp. 575-580 (2005).
Assigning vibrational polyads using relative equilibria.
Application to ozone.
Spectrochim. Acta A, 61, 2867-2885 (2005).
Monodromy of the quantum 1:1:2 resonant swing
spring.
J. Math. Phys., 45, 5076-5100 (2004).
CO2 molecule as a quantum realization
of the 1:1:2 resonant swing-spring with monodromy.
Phys. Rev. Lett. 93, 024302-1-4 (2004)
Analysis of rotation-vibration relative
equilibria on example of a tetrahedral four atom molecule.
SIAM Journal of Dynamical Systems, 3, 261-351 (2004).
The integrated number of vibrational states in
acetylene (12C2H2,13C2H2, 12C2D2)
Mol. Phys. , 101, 595-601 (2003).
Reorganization of energy bands in quantum
finite particle systems.
Proceedings of ICGTMP 2002, Paris (2002), p. 625-632
Fractional monodromy of resonant classical and
quantum oscillators.
C.R.Acad.Sci. Paris Ser. I, 335, 985-988 (2002).
Topologically coupled energy bands in molecules.
Phys. Lett. A 302, 242-252 (2002); ArXive: quant-ph/0204100.
Monodromy of a two degree of freedom
Liouville integrable system with many focus-focus singular points.
J.Phys. A Math. Gen. 35 L415-L419 (2002).
Monodromy in systems with coupled angular momenta
and rearrangement of bands in quantum spectra.
Phys. Rev. A., 65, 012105 (2002).
Qualitative features of intra-molecular dynamics.
What can be learned from symmetry and topology.
Acta Appl. Math. 70, 265-282 (2002)
Qualitative features of quantum finite particle
systems.
Proceedings of Andronov memorial conference, vol.II.
Frontiers
of Nonlinear Science, pp 614-619, Nozhnii Novgorod Russia (2002).
Rotational-vibrational relative equilibria
and the structure of quantum energy spectrum of the tetrahedral molecule P$_4$.
Europ. Phys.J. D 17, 13-35 (2001).
Invariant theory in crystal symmetry.
Symmetry and Structural Properties of Condensed
Matter. Ed. T. Lulek, B. Lulek, A. Wal. Proceedings of 6-th
International School of Theoretical Physics. 31 August - 6 September
2000. World Scientific, 2001, pp. 346-357
Topological properties of the
Born-Oppenheimer approximation and implications for the exact spectrum.
Let. Math. Phys. 55, 239-247 (2001).
Symmetry, Invariants, and Topology. I. Basic Tools.
Phys. Rep. 341, 11-84 (2001).
Symmetry, Invariants, and Topology. II
Symmetry, invariants, and topology in moleculsr models.
Phys. Rep. 341, 85-171 (2001).
Symmetry, Invariants, and Topology. III.
Rydberg states of atoms and molecules. Basic group theoretical and
topological analysis.
Phys. Rep. 341, 175-264 (2001).
Symmetry, Invariants, and Topology. V.
The ring of invariant real functions on the Brillouin zone.
Phys. Rep. 341, 337-376 (2001).
Topological Chern indices in molecular spectra
Phys. Rev. Lett. , 85, 960-963 (2000). (quant-ph/9912091).
The vibrational energy pattern in
acetylene (VI): Inter and intrapolyad structures
J.Chem. Phys. , 113, 7885-7890 (2000).
Analysis of the ``Unusual'' Vibrational
Components of Triply Degenerate
Vibrational Mode nu_6 of Mo(CO)_6 Based
on the Classical Interpretation of the Effective Rotation-Vibration
Hamiltonian
J. Mol. Spectrosc. 201, 95-108 (2000).
Monodromy, diabolic points, and
angular momentum coupling
Physics Letters 256(4), 235-44 (1999).
Qualitative analysis of molecular rotation
starting from inter-nuclear potential
European Phys. J. D7, 199-209 (1999).
Correlation between asymmetric and spherical top: imperfect
quantum bifurcations
Spectrochim. acta A 55, 1471-1484 (1999).
Tuning the hydrogen atom in crossed fields
between the Zeeman and Stark limits,
Phys. Rev. A 57(4), 2867-84 (1998).
Topological and symmetry features of intramolecular
dynamics through high resolution molecular spectroscopy,
Spectrochim. Acta A 52, 881-900 (1996).
Density of vibrational states of a given symmetry type for
octahedral AB6 molecules,
Chem. Phys. Lett. 258, 25-29 (1996).
Collapse of the Zeeman structure
of the hydrogen atom in the external electric field.
preprint IHES P/95/86, Bures-sur-Yvette, 1995;
Phys. Rev. A 53(6) 4064-7 (1996)
Counting levels within vibrational polyads.
Generating function approach,
J. Chem. Phys. 103(24), 10520-36 (1995).
The rotational structure of the vibrational
states and substates of symmetry $E$ in CF$_4$.
J. Mol. Spectrosc. 172, 303-318 (1995).
Transfer of clusters between
the vibrational components of CF$_4$.
J. Mol. Spectrosc. 169, 1-17 (1995).
The
symmetry of the vibrational components in T$_d$ molecules.
J. Mol. Spectrosc. 163, 326-338 (1994).
Nonlinear normal modes and local bending vibrations of
H3+ and D3+,
J. Chem. Phys. 99(2), 906-18 (1993).
The pattern of clusters in
isolated vibrational components of CF$_4$ and the semiclassical model.
J. Mol. Spectrosc. 160, 192-216 (1993).
Qualitative study of a model three level Hamiltonian
with SU(3) dynamical symmetry,
Phys. Rev. A 48(2), 1035-44 (1993).
Group theoretical and topological analysis of
localized vibration-rotation states,
Phys. Rev. A 47(4), 2653-71 (1993).
Critical Phenomena and Diabolic Points
in Rovibrational Energy Spectra of Spherical Top Molecules,
J. Molec. Spectr. 139, 126-46 (1990).
Manifestations of bifurcations and diabolic points
in molecular energy spectra,
J. Chem. Phys. 92, 1523-37 (1990).
Qualitative analysis of vibrational polyads: N-mode case. ,
Chem. Phys. 137, 1-13 (1989).
Contact transformations in
tensor formalism. Effective Hamiltonian and dipole moment for the $\nu_2 ,
\nu_4$ dyad of tetrahedral molecules.
JQSRT, 42, 575-583 (1989).
Organization of quantum bifurcations: Crossover of rovibrational bands in spherical top molecules, Europhys. Lett. 10, 409-14 (1989).
On the dynamical meaning of diabolic points, Europhys. Lett. 6, 573-78 (1988).
Qualitative analysis of vibration-rotation Hamiltonians for spherical top molecules, Molec. Phys. 65 109-28 (1988).
Critical phenomena in
rotational spectra
Ann. Phys. (N.Y.) 184, 1-32 (1988).
Effective Hamiltonians
for vibrational polyads: Integrity basis approach.
Chem. Phys. 126, 243-253 (1988).
Rearrangements of the
vibrational po\-ly\-adic spectra with excitation: two-mode case.
Chem. Phys. 128, 429-437 (1988).
Further analysis of effective Hamiltonians for
triply degenerate fundamental bands of tetrahedral molecules.
J. Mol. Spectrosc. 117, 102-118 (1986).
Theoretical analysis of
spectroscopic constants for spherical tops. $\nu_2, \nu_4$ bands of AB$_4$
molecules.
J. Mol. Spectrosc. 115, 235-257 (1986).
Rotation of molecules
around specific axes: axes reorientation under rotational
excitation.
Chem. Phys. 100, 339-354 (1985).
Reduced
Hamiltonian for 0100 and 0001 interacting states of tetrahedral XY$_4$
molecules. Calculated $q^2J^2 , q^2J^3$ type parameters
J. Mol. Spectrosc. 111, 1-19 (1985).
Reduced
effective Hamiltonian for degenerate vibrational states of methane-
type molecules.
J. Mol. Spectrosc. 103, 147-159 (1984).
Ambiguity of
spectroscopic parameters in the cases of accidental vibration-rotation
resonances in tetrahedral molecules.
Chem. Phys. Lett. 104, 455-461 (1984).
The hydrogen atom in a
superstrong magnetic field.
Phys.Lett. A. 75, 279-281 (1980).
Neutral hydrogen-like
system in a magnetic field.
Phys.Lett. A. 78, 244-245 (1980).
Molecular structure of the boron
(III) oxide molecule in the SCF approximation.
J. Mol. Structure 68, 199-202 (1980).
Spectra of tensor operators adapted to
nonstandard basis. Qualitative features of clustering.
J. Mol. Spectros 78, 203-228 (1979).
Vibration-rotation
Hamiltonian for nonrigid triatomic molecules with diatomic
rigid core.
Chem. Phys. 31, 413-423 (1978).
Nonrigid molecules with several large-amplitude
coordinates.
J. Mol. Structure 46, 183-188 (1978).
Nuclear charge changes:
influence on the energy of highly symmetrical molecules.
Chem. Phys. Lett. 45, 589-591 (1977).
Vibration-rotation
problem for triatomic molecules with two large-amplitude
coordinates. Spherical model.
J. Mol. Spectrosc. 67, 265-282 (1977).
When and why Hund's cases
arise.
J. Mol. Spectros 52, 277-286 (1974).
Minimization of the energy
functional on the special class of unitary operators.
Teor. Mat. Fiz. 15, 146-150 (1973);
Translated in : Teor. Math. Phys. (USA) . 15, 422-425 (1973).
Separation of variables illustrated by the
example of the three-body problem
Teor. Eksp. Khim. 8, 672-676 (1972);
Translated in : Teor. Eks. Chem.. (USA) . 8, 555-558 (1972).
Method of Irreducible Tensor operators in molecular spectroscopy
part 1. Basic theory. (In russian)
Chemistry department, Moscow State University, Moscow 1981.
Method of Irreducible Tensor operators in molecular spectroscopy
part 2. Tables and formulae. (In russian)
Chemistry department, Moscow State University, Moscow 1981.
Rearrangement of energy bands: Chern numbers in the
presence of symmetry.
Acta Appl. Math. submitted 2011.
Symmetry, invariants, topology in molecules.
Proceedings of ICGTMP 2000, Dubna (2000).
Rearrangement of energy bands :
Quantum, semi-quantum, and classical models.
Proceedings ... , 67 RCP, Strasbourg (2000).
``Symmetry, Invariants, and Topology'' (Ed. L. Michel).
submitted to Physics Reports, october 1999.
[published Phys. Rep. 341, (2001))