
JOURNAL OF MOLECULAR SPECTROSCOPY 139, 126- 146 ( 1990) 

Critical Phenomena and Diabolic Points in Rovibrational Energy 
Spectra of Spherical Top Molecules 

V. M. KRIVTSUN AND D. A. SADOVSKII 

Institute of Spectroscopy, USSR Academy of Sciences, Troitzk, Moscow Region 142092, USSR 

AND 

B. I. ZHILINSRII 

Chemistry Department, Moscow State University, Moscow 119899, USSR 

The qualitative modifications of the rovibrational energy-level structure under rotational ex- 
citation are studied for spherical top molecules. The ~2, v4 bands of ‘*CD., and ‘*?SnH4 and the 
Y,, Y) bands of ‘*‘SnH4 are treated as examples. Two types of qualitative changes are shown to 
exist: the critical phenomena corresponding to the modification of the cluster structure and the 
so-called diabolic points associated with the redistribution of energy levels between different 
branches as the rotational quantum number increases. A simple model interpretation of energy- 
level redistribution is given to show that such a phenomenon is typical for tetrahedral molecules. 
Manifestation of critical phenomena and diabolic point formation in high-resolution infrared 
spectra are discussed. 0 1990 Academic Press, hc. 

1. INTRODUCTION 

The qualitative description of high-resolution experimental data on rovibrational 
molecular spectra is based nowadays on the utilization of complicated effective Ham- 
iltonians with large numbers of phenomenological parameters, i.e., spectroscopic con- 
stants. Such an approach encounters obvious technical obstacles for excited vibrational 
states due to a sharp increase of the number of resonant vibrational states and the 
number of effective parameters as well. The simplification of this problem can be 
achieved if regular sequences of states are indicated within the rotational multiplet of 
the vibrational polyad considered. From this point of view, the classical analysis of 
rotational motion proves very useful. It enables one to find in the rotational level 
system the localized states corresponding in the classical limit to the small precession 
of the angular momentum around some stable rotation axes ( 1-9). Such quantum 
states form the regular sequences of the quasidegenerate levels (the so-called clusters). 
Besides clusters, the quantum energy spectrum shows the existence of states with 
essentially delocalized wavefunctions. These quantum states correspond to an unstable 
classical rotation and are situated in the energy region between clusters of different 
types. Such a simple classical analysis which clearly explains the rotational cluster 
structure has been widely discussed in the literature, especially for spherical top mol- 
ecules (Z-6). 
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The cluster structure reflects the rotational dynamics of the molecules. The rotational 
excitation may result in modifications of the dynamical behavior and the corresponding 
cluster structure. As shown in Refs. (8, 9)) modifications of the cluster structure can 
be interpreted as critical phenomena associated in the classical limit with the formation 
or disappearance of new stable rotation axes. The phenomenological (Landau type 1 
theory of the classical phenomena in the rotational spectra of finite particle systems 
was presented recently (8, 9). but the demonstration of such phenomena by analysis 
of the experimental data is not yet given. 

Spherical top molecules are extremely suitable for the study of qualitative features 
of rotational energy levels due to rich information on the rovibrational energy levels 
of these molecules and to the high density of rotational and vibrational states which 
results in a rather complicated energy-level system. Degenerate and quasidegenerate 
vibrational states are typical for spherical tops. Thus, along with critical phenomena, 
another type of qualitative effect is appropriate for the same molecules: the redistri- 
bution of rotational energy levels between different branches in the energy spectra. 
This phenomenon was shown to be related in the classical limit to the formation of 
the conical intersection points (or diabolic points) of different rotational energy surfaces 
( 12, 16). Such a situation is typical for quantum problems with intersecting rotational 
multiplets. It should be noted that the qualitative phenomena associated with the 
formation of diabolic points either in the space of parameters or in the space of dynamic 
variables are appropriate for very different physical problems ( 10-12). 

This article is devoted to the study of both types of qualitative effects for energy- 
level systems of real spherical top molecules. Section 2 gives a brief outline of the 
general semiclassical analysis appropriate for the study of qualitative effects. The study 
of diabolic points for the v2, v4 bands of tetrahedral molecules is taken up in Section 
3. The critical phenomena in the v2 band are studied in detail in Section 4 through 
an analysis of experimental data on 12’SnH4 ( 13). Section 5 deals with the qualitative 
analysis of new experimental data on the vI , v3 bands of “‘SnH4 ( 14). The existence 
of the diabolic point connected with the intersection of the v1 and v3 bands and the 
existence of the critical phenomenon in the p-branch of the v3 band, which is analogous 
to that found in the v2, v4 dyad, are shown. This special interest in the vI , v3 bands of 
12’SnH4 is due to the fact that particular attention was paid during the experimental 
investigation to the part of the energy spectrum exhibiting the critical behavior. Thus, 
the manifestation of the critical phenomenon in the experimental spectra is specially 
discussed. 

2. ENERGY SPECTRUM OF THE EFFECTIVE OPERATOR IN THE CLASSICAL LIMIT 

Transformation of the effective quantum operator into its classical analog enables 
one to easily realize the qualitative analysis of the problem considered and, in particular, 
the qualitative changes associated with the variation of such an important physical 
parameter as the total angular momentum I.J( = (J(J + 1)) ‘12. Transformation to 
the classical limit may be made using the well-known simple formulae 

J, = 1 Jlcos(B), J, = IJlcos(4)sin(fI), .I4 = I Jlsin(4)sin(B). (1) 
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In this case the effective rotational Hamiltonian of a general type, 

H,t = 2 Cnbc(J:J;J: + cc.) = H(J,, J,,, J,), 
a&c 

(2) 

has as its classical analog the scalar function EJ(B, 4) depending on two dynamic 
variables, 8, 4 and the phenomenological spectroscopic constants C,,. The function 
E’( t?,4) is usually called the rotational energy surface ( 6). The angles .9,@ specify the 
direction of the classical rotation axis and play the role of classical phase variables. 
The qualitative analysis of the rotational energy surface EJ(B, 4) includes first the 
location of the stationary points and the study of their stability. The maxima and 
minima of the energy surface E’( 0, 4) correspond to the stable rotation axes in the 
classical problem and to a sequence of localized states in the associated quantum 
problem. The stability of the rotation around any given axis can be estimated quali- 
tatively using the Hessian value 

a2EJ+ a2EJ a2EJ - --- 
a42 a02 a4ae 

sin’8. (3) 

Localized quantum states with a high value of the projection of the angular momentum 
on a given axis are only formed if the Hessian is positive and sufficiently large. For 
high Hessian values the regular sequence of the quantum states can exist. It is well 
characterized by the good quantum number M = J, J - 1, . . . , the projection of the 
angular momentum on the stable rotation axis. Symmetry requirements result in the 
fact that a system of equivalent stationary points generally exists for the energy surface 
EJ(8, 4) of spherical top molecules. For example, in the case of a cubic rotational 
symmetry group there are 6, 8, and 12 equivalent stationary points corresponding, 
respectively, to the C4, C, , and C2 rotation axes. In this case, the localized quantum 
states form quasidegenerate groups, the so-called clusters, which are widely discussed 
in the literature ( 1-6). The rotational multiplets of spherical top molecules, in particular 
the rotational structure of the ground vibrational state, are generally characterized by 
regular sequences of 6-fold and 8-fold clusters. Intracluster splitting usually decreases 
exponentially as the cluster energy approaches the limiting classical value. The splitting 
becomes smaller for higher Hessian values as well. The symmetry types of the levels 
forming each cluster can easily be found from induced representation theory taking 
into account the local symmetry group g for the stationary rotation axes (2, 15). 

Let us consider now the quantum number J of the angular momentum as a pa- 
rameter. In this case a natural question arises: what are the generic qualitative changes 
of the rotational energy surface under J variation, i.e., under rotational excitation? 
The clearest visualization of the qualitative changes can be achieved by plotting the 
energies at the stationary points of the energy surface in (E, J) variables (8, 9). This 
energy (or bifurcation) diagram shows the formation (or disappearance) of stationary 
points and, consequently, indicates modifications in the cluster structure of the ro- 
tational multiplet. To complete the energy diagram it is useful to indicate the Hessian 
values for all stationary points. The sign of the Hessian shows the stability of the 
stationary point and the possibility of the formation (in principle) of the sequence of 
localized states (the clusters) of a given type. A negative Hessian value corresponds 
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to an unstable rotation. A zero value of the Hessian for some critical value J, of the 
angular momentum indicates bifurcation in the limiting classical problem. The bi- 
furcation is associated with qualitative modification of a system of stationary points 
of the energy surface and with variation of the topological structure of the set of 
classical phase trajectories. The corresponding phenomena taking place for the parent 
quantum problem at J - J, were called in Ref. (8) the critical ones. In Ref. (8) the 
general classification of the critical phenomena in an isolated rotational multiplet was 
given. It is based on the notion of the local symmetry group g. Five different types of 
critical phenomena are possible for a pure rotational problem in the case of finite 
symmetry groups (8): nonlocal critical phenomenon with the C1 local symmetry group, 
local and nonlocal critical phenomena with the C’, local symmetry group, nonlocal 
critical phenomena appropriate for the C, and C, local symmetry groups, and local 
critical phenomena appropriate for C,, (n > 3) local symmetry groups. The manifes- 
tation of the critical phenomena in the energy-level system of the quantum problem 
is the modification of the cluster structure. For example, the nonlocal C’, critical phe- 
nomenon in the case of spherical top molecules corresponds to the formation or 
disappearance of 1Zfold clusters in the energy spectra due to the transformation of 
an unstable stationary CZ axis into a stable one or vice versa during the corresponding 
classical bifurcation. 

The model of an isolated nondegenerated vibrational state is acceptable for poly- 
atomic molecules in a very limited number of cases. The existence of degenerate 
vibrations and polyads of resonant vibrational states requires the explicit introduction 
of rovibrational interactions. The natural generalization of the effective rotational 
Hamiltonian in this case is the effective rotation-vibration Hamiltonian which may 
be written in a matrix form as 

Hvibrot = 

u 

HII(J.~, Jy, Jz) . . . ffdJx, Jp Jz) 
. . . . . . . . . ~ (4) 

H,w(Jx, Jy., Jz) . . . ffNN(&r J,., J-1 u 
where N is the number of resonance vibrational states forming the polyad and the 
matrix elements H,(J,, Jy, Jz) can be expanded, similarly to (2), in proper series 
taking into account the symmetry requirements and hermiticity. Similarly to the 
Hamiltonian (2) the quantum number J for the operator (4) is an integral of motion 
and the phase space for the limiting classical problem is two-dimensional sphere. At 
the same time the classical symbol for the Hamiltonian (4) is now the Hermitian 
matrix 

which can easily be obtained from (4) using the expressions ( 1). This approach was 
called semiclassical in Ref. (3, 16) due to simultaneous use of the classical description 
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for the rotational degrees of freedom and the quantum description for the vibrational 
motion. 

The eigenvalues of the matrix ( 5 ) are to be interpreted as rotational energy surfaces 
EJk( 8, Cp) for each vibrational state of a polyad ( k = 1, . . . , N) . These energy surfaces 
may be interpreted as N deformed spheres put one into another. The qualitative study 
of the rotational structure of the polyad reduces in the classical limit to the bifurcation 
analysis of each energy surface Ei( 8, 4). At the same time, an additional possibility 
of the appearance of a new qualitative phenomenon exists for a system of energy 
surfaces. Two rotational energy surfaces can form a conical intersection point (the 
so-called diabolic point). This means that for an isolated value J = J, two surfaces 
form one two-sheet surface. Such a situation, for example, naturally arises in the case 
of the quantum problem with intersecting rotational multiplets of different vibrational 
states. One can note that the behavior of the Hessian value at J + J, depends obviously 
on the local symmetry group g of the corresponding diabolic point. If this symmetry 
group is C,, n = 3, 4, . . . , stable stationary points exist at J f J, on both energy 
surfaces and in consequence the Hessian value is positive. 

It was shown in Ref. (12) that the formation of a diabolic point for a classical 
symbol reflects such qualitative phenomena in the energy spectrum of the quantum 
problem as the redistribution of the energy levels between different branches. This 
phenomenon is a purely quantum one because a simple semiclassical quantization 
procedure for separated isolated energy surfaces cannot yield a state with the energy 
close to the diabolic point. Such a highly localized state may exist only due to quantum 
tunneling between different energy surfaces and it is just this state that goes from one 
branch to another passing through the diabolic point with J variation. 

It should be noted that for spherical top molecules the formation of a system of 
diabolic points takes place simultaneously at a number of symmetry equivalent points 
(6, 8, 12, - * . ) depending on their local symmetry group. Accordingly, the redistri- 
bution of the 6, 8, 12, - - --fold clusters between different branches takes place with 
an increasing J. The relation between diabolic point formation for the rovibrational 
problem and some other problems in very different fields of physics (particle and 
nuclear physics, superconductivity, light propagation, etc.) was briefly discussed in 
Ref. (12), where the interpretation of the redistribution phenomena in terms of Berry’s 
geometrical phase (10, I I) was given. The mathematical reason is the topological 
origin of the diabolic point. It shows, consequently, the independence of this phenom- 
enon of the concrete form of the Hamiltonian. 

3. DIABOLIC POINTS IN THE ROTATIONAL STRUCTURE OF THE Q, v4 DYAD 

OF TETRAHEDRAL MOLECULES 

The v2, v4 dyad of bending modes in tetrahedral molecules is an example of the 
most widely studied vibrational polyads. The separation between the u2 and v4 bands 
of CH4, CD*, SiH4, and GeH4 is about 100-200 cm-‘. Thus, the description of the 
rotational structure in terms of isolated vibrational bands is possible for J < 10 only. 
For higher J values explicit introduction of the resonance interaction terms is necessary. 
The most important nondiagonal Coriolis interaction term, U&‘*F~), was first intro- 
duced in Ref. ( 17). Much more elaborate resonance models are successfully used now 



CRITICAL PHENOMENA AND DIABOLIC POINTS 131 

Paruneters of U.A.Kreiner und A.G.Hobiette Nu2,Nu4 diad 

QC points: QBX 

123 

ENEF?tiY cm-l 

*‘” w-x 
,s.......r...-..=-‘” 

x_ ,,,.,. - 
--- ,.,, I” 

-- 
_- _- --- 

-- - __-- 
-- -- rz---,_- 

...&Z..G...3..g _.(_ e ,.__ f .._, fi 

-1 

,. I 

‘. -5 

,. 5 

R=J-2 

,045 

‘95 

R=J+l 

‘45 

R=J+Z 
I 

Angular momentun J 

3.12.1987. 

FIG. 1. The rotational structure of the Ye, v4 dyad of ‘*CD4 calculated according to the parameters of Ref. 
( 19). The dashed line indicates the classical rotation energy around stationary axes: ( 1) C2 (rhomb); (2) 
C, (square): (3) C, (cross). Note: The energy of the rotational states is given after the scalar part of the 
ground state energy is subtracted: E - (B,,J( J + 1) - &J*(J + 1)’ + . . - ). 

for the analysis of the v2, v4 bands of many tetrahydrides ( 18). Figure 1 shows the 
rotational structure of the v2, u4 dyad of 12CD4 calculated from the data of Ref. ( 19). 
The rotational multiplet includes five well-separated branches corresponding to five 
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vibrational levels of the dyad ( u2( E) is doubly degenerate and v4( F2) is triply degen- 
erate) . This structure is typical for almost all tetrahedral molecules and is mainly due 
to the frequency difference A = u2 - v4 and the Coriolis interaction given up to the 
first order by two independent parameters ~$2’~~) and u:$‘,“l’. For low J values v4 , 
shows a well-known three-branch structure: F+, F”, F- (20), caused by diagonal 
Coriolis interaction U:$‘,“l). The v2 band includes two branches which are formed 
due to resonance Coridlis interaction with the v4 band and diagonal interactions of 
higher orders, TJ$?, etc. For higher J values the Au value is of the same order as 
the Coriolis interaction. This results in the redistribution of the energy levels between 
different branches of the rotational multiplet. Figure 1 clearly shows the transition of 
an &fold cluster from the upper F+ branch of the v4 band to the F” band and the 
transition of a 6-fold cluster from F@ to F- with an increase of J. In addition to 
quantum energy levels, Fig. 1 shows the results of classical analysis of the v2, u4 dyad. 
Classical energies for stationary points with the C2, C’, , and C4 local symmetry are 
only shown for the sake of simplicity. It is clear from the diagram that the conical 
intersection of the rotational energy surfaces for the F+ and F” branches takes place 
at J - 18 in the direction of the C, axis. Indeed, due to symmetry there are eight 
equivalent diabolic points which cause the redistribution of the 8-fold cluster between 
these two branches. Another diabolic point occurs at J - 19 between the F” and F- 
branches in the direction of the C4 axis. It results in regrouping of the 6-fold cluster. 

The redistribution of the energy levels is so obvious that for J > 20 it seems to be 
natural to introduce a new pseudorotational quantum number R which takes values 
R = J + 2 and R = J + 1 for the lowest and central branches of the v4 band and 
describes the numbers of the energy levels in these branches as equal to 2 R + 1. The 
appearance of new well-separated branches evidences the modification of the dynamical 
symmetry of the problem considered, which can be interpreted as the recoupling of 
the vibrational and rotational angular momenta. 

Let us now give a qualitative explanation of this phenomenon. First of all, we 
neglect the tetrahedral splitting and suppose that the dynamical symmetry for the 
quickly rotating molecule is close to spherical. To realize such a supposition we use 
the Hamiltonian, which is invariant with respect to the SO( 3) group. The relevant 
details are given in the Appendix. We note only that five vibrational operators, 

<a2>8, <a2>8, (a4>,F’, <a4>Fi, (a4)9, 

must be considered as components of the spherical tensor of rank two. For the spher- 
ically invariant Hamiltonian, only one term linear in angular momentum operators 
is admissible: the operator HI in the expression (A-5). 

H;S0’3” = (U$,“l, _ 21/2U;$,F1))/51/2. 

As soon as the first-order Coriolis interaction is responsible for the branch structure 
of the rotational multiplet, the SO( 3) invariant tensor operator H, is the most im- 
portant one for the qualitative interpretation of the branch structure. Its spectrum 
includes five branches characterized by the pseudorotational quantum number R: R 
= J+2,J+ l,..., J - 2. Each branch includes (2 R + 1) degenerate levels (we 
neglect the (2 J + 1 )-fold degeneracy with respect to the projection of the total angular 
momentum on the laboratory fixed frame (21, 22)). It can easily be verified that the 
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branches in the spectrum of the operator Hi are similar to those appropriate for the 
u2, v4 dyad at high J values. To describe properly the main effect appropriate to the 
SO( 3) symmetry violation, we consider the model problem with the Hamiltonian 

H = (A/2)Hp’ + tH;S0’3”, 

Ho (rd) = 21/2~:!$.~1) - 31/2u;!pA1) = 2 (a;)f(a2); - c (a;)?(%)?. (6) 
s=l,2 s=l.3 

The term H I”“” in Eq. (6) possesses spherical symmetry and describes the Coriolis 
interactions. The Ho term describes the resonance detuning between the u2 and v4 
states which results in broken spherical symmetry for A # 0. The energy level system 
for the Hamiltonian (6) is shown in Fig. 2 together with the result of the semiclassical 
analysis. It is clearly seen from Fig. 2 that the Hamiltonian (6) adequately reproduces 
the redistribution of the energy levels between the branches of the v2, v4 dyad under 
rotational excitation. The transition to the new scheme of the coupling of the rotational 
and vibrational angular momenta in the case of operator (6) is completed by passing 
the 6-fold cluster from the lower v2 branch to the u4 state. In the CD4 molecule this 
transition probably takes place for rather high J-values due to a large value of Au. 
The example of the v2, v4 dyad of 28SiH4 shows such a transition much more clearly. 
The phenomenon of energy-level redistribution between different branches of the v2, 
u4 bands is also appropriate for some other tetrahedral molecules. This supposition 
follows from the analysis of the parameters of the first-order Coriolis interaction, 
U;!iJ~) and u:$‘*“l’ According to Eq. (A-5), if spherical symmetry is required these 3 . 
parameters must satisfy the relation 

U&W) = -2 1/24W~ (7) 

Table I shows that Relation (7) is approximately correct for a number of molecules 
and is most accurate for the CD4 and SiH4. 

4. THE CRITICAL PHENOMENA IN THE ROTATIONAL STRUCTURE 

OF TETRAHEDRAL MOLECULES: v2(E) VIBRATIONAL STATE 

Let us now study the cluster structure of the rotational levels of the u2, u4 dyad. To 
describe properly this complicated rotational structure, a number of rovibrational 
tensor operators should be introduced into the Hamiltonian. As the degree of the 
elementary rotational operators J, (a = x, y, z) is different for various terms, the 
relative contributions of these terms depend strongly on the rotational quantum num- 
ber. Each tensor operator may be characterized by the system of stationary axes and 
by its own cluster structure correspondingly. Thus, from the known set of the spec- 
troscopic parameters it is almost impossible to predict (without numerical calculations) 
the rotational cluster structure even approximately due to the dependence of the high- 
order contributions on the value of J and the rearrangement of the cluster structure 
of the rotational multiplet as J increases. Such a rearrangement (or perestroika) is 
associated with the critical phenomena discussed above in Sect. 2. For spherical tops 
the simplest example of this kind is given by the well-known model Hamiltonian of 
the ground state, 

H,, = U;(4.h)R4(4+4~) + t#64~)R6(6.~~) + scalar terns 
(8) 
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FIG. 2. The rotational structure of the model Hamiltonian including the two most important terms 
responsible for the rotational structure of the vz, v, dyad of tetrahedral molecules. The dashed line indicates 
the classical rotation energy around stationary axes: ( 1) Cz , ( 2) C, , ( 3) C, 

With an increase of J the spectrum of the Hamiltonian (8) shows the transition from 
the structure appropriate for R 4(4,A1J to that for R6(6,A1). But it should be noted (15, 
23) that for real molecules u~(~*~I) % ~8’“~” ) ’ and the critical phenomena could take 
place at unrealistically high values of J. For excited vibrational states the relations 
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TABLE I 

Coriolis Interaction Parameters and the Vibrational Frequency Difference 
for the v2, v., Bands of Tetrahedral Molecules. 

Molecule 12CH4 12CD4 28SiH4 74kH4 120SnH4 l 

A cm 
-1 

222.57 93.78 56.97 109.21 72.64 0 

l(l,Fl) l(l,F1) 
"I a jU& Ll -0.9310 -1.3794 -0.9275 -0.6894 -0.6889 -2+ 

* Denotes the case of the SO( 3) symmetry. 

between parameters are strongly modified due to a larger number of rovibrational 
resonances. New types of rovibrational tensor operators should be introduced for 
degenerate and resonant vibrational states. The cluster structure of the spectra of some 
individual rovibrational tensor operators is studied in Refs. (3, 4) for isolated vibrational 
states of E and F2 symmetry species. To study critical phenomena the model operators 
must include at least two tensors of different rank. In Refs. ( 16, 25) the critical phe- 
nomenon was studied for a model Hamiltonian of the E-state, which includes as its 
two most important*tensor contributions 

2C2.E) 
H = u2,2 

v;!;."' + U;$%A2)U;y2). 
(9) 

For real tetrahedral molecules, such as CH, and SiH4, the critical phenomenon pre- 
dicted in Ref. (16) takes place for the u2 state at J - 10-20. Let us analyze this 
phenomenon for 12’SnH4 as an example. 

The rotational structure of the u2 state of 12’SnH4 is shown in Fig. 3. It is calculated 
from the parameters obtained in Ref. ( 13). Two branches are clearly shown in Fig. 
3. The upper E- branch includes (2R + 1) levels with R = J - 2 and the lower E+ 
branch includes (2 R + I ) levels with R = J + 2. The regrouping of the 6-fold cluster 
between the E+ branch and the u4 state (see Sec. 3) takes place for this molecule at 
very high J values. Thus, for the study of diabolic points the present example is not 
interesting and we consider the critical phenomena only. 

At low J values (J < 10) the rotational multiplets of both branches possess a cluster 
structure similar to that of the ground vibrational state. Figure 4 shows that there are 
two stable stationary rotation axes, C4 and C,, and one unstable stationary axis, C,. 
For the quantum problem one can see only 6-fold clusters because at low J values 
the number of quantum levels is rather small to produce all kinds of clusters and the 
relative stability of the C, rotation axis (characterized by the Hessian value) is much 
smaller than that of the C4 rotation axis. The Hessian for the C2 rotation axis becomes 
positive at J > 7 for the E- branch and at J > 10 for the E+ branch. In accordance 
with the general consideration (8) the nonlocal critical phenomenon with C2 broken 
symmetry takes place. The saddle point on the rotational energy surface transforms 
into a maximum (as on the E+ surface) or a minimum (as on the E- surface) and 
two new unstable stationary points (saddle points). As can be seen from Fig. 4, the 
Hessian value for the C2 point of the E+ rotational surface increases with J and the 
12-fold cluster appears in the higher part of the E+ branch at J > 14. The Hessian 
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FIG. 3. The rotational structure of the Ye state of “‘SnH4 calculated with the parameters of Ref. (13). 
The dashed line shows the classical rotation energy around stationary axes: ( 1) C, , ( 2 ) C, , ( 3 ) C, See also 
the note to Fig. 1. 

variation for the C, rotation axis shows the existence of the C, nonlocal critical phe- 
nomenon for both branches. It consists of transforming (for the E+ branch as an 
example) the local maximum into a minimum at J = 14. 

The behavior of the Hessian for the Cd axis is rather different for the E+ and E- 
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FIG. 4. The bifurcation analysis of the v2 band of ‘%nH4. The signs 63 and 8 are used to designate the 
branches and energy surfaces: + is for the lower branch, E+ (R = J + 2 ); - is for the upper branch, E- (R 
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values. The stable stationary axes are designated by solid lines, whereas dotted lines are used for the unstable 
ones. The nonlinear transformation h(J) + arcsh( const h(J)) is used to properly represent the Hessian 
behavior. The marked points are obtained from straightforward classical calculation. The lines are plotted 
using the Lagrange interpolation. 

surfaces. The stability of the C, stationary point on the E+ surface increases with J 
and the corresponding minima become deeper. The E- surface shows at the C, point 

the nonlocal critical phenomenon (.I - 11) corresponding to transformation of the 
local maximum into the minimum. At a slightly higher value of J (J - 12) the Cz 
local critical phenomenon takes place on this surface. This phenomenon corresponds 

to the change of stability of the C, points and disappearance of additional saddle 
points. These saddle points were born by C,, nonlocal critical phenomena. Then they 
changed their positions with increasing J and passed through the C, and C4 points 
causing nonlocal critical phenomena. Finally, these saddle points return to the CZ 
points and disappear by the C, nonlocal critical phenomenon. As all these critical 
phenomena take place approximately at the same J value, they may be considered as 



138 KRIVTSUN, SADOVSKII, AND ZHILINSKII 

one complicated qualitative phenomenon. The resulting modification of the cluster 
structure of the E- branch may be represented as an overcrossing of the rotational 
multiplet taking place at J - 9-12. For these values of J the E- energy surface is 
almost spherical. As a consequence, the rotational splitting is anomalously small at J 
- 9, 10 (see Fig. 3). For higher J values the 6-fold and 8-fold clusters are formed in 
lower and upper parts of the E- rotational multiple& respectively. 

In conclusion, we want to point out the good agreement between the classical de- 
scription and the quantum results shown in Fig. 3. The most interesting example of 
this agreement is the formation of 1Zfold clusters in the upper part of the E+ branch. 
These clusters verify at the same time the appearance of the critical phenomenon. 
They were observed experimentally as shown in Table I of Ref. ( 13), where Q( 14) 
transitions to the v2 levels forming a 12-fold cluster (E, F1, F, , F2, AZ) are listed. In 
the “‘SnH4 spectrum these transitions are observed in the frequency range of 759.088 l- 
759.1776 cm-‘, whereas the nearest line is situated at 758.67 12 cm-‘. Figure 3 indicates 
that the cluster cited above is probably the first 12-fold cluster occurring in the v2 state 
of 12’SnH4. It should be noted that we use the relation of Ref. (24) 

u$yF2’ = -( 3/2)“2d2,4 (10) 

to reproduce the structure of the rotational multiplet by means of the parameters 
obtained in Ref. (13). 

5. QUALITATIVE ANALYSIS OF THE ROTATIONAL STRUCTURE 
OF THE Y,, vj DYAD OF “‘SnH4 

The characteristic feature of the vibrational spectra of stannane is the small splitting 
( -2 cm-‘) of the vl and v3 stretching vibrations. Such quasidegeneracy is typical for 
tetrahedral molecules with a heavy central atom ( SiH4, GeH4). Thus, the treatment 
of the vl, v3 bands as an isolated dyad seems to be adequate. At the same time, it 
should be noted that the internal structure of the vl, v3 dyad changes considerably 
when passing from SiH4 to GeH4 and SnH4, due to strong variation of the Coriolis 
interaction. The Coriolis constant BSj for the v3 state has a small positive value for 
SiH4 and takes large negative values for GeH4 and SnI&. Moreover, the isotopic shift 
of the v3 band is of the same order of magnitude as the vl, v3 frequency difference A 
= Vl - v3. So the rotational structure of the v1 and v3 bands may vary considerably 
with isotopic substitution. We studied the peculiarities of the vi, v3 bands of 28SiH4 
earlier (16). In this section, we present a qualitative theoretical analysis of the rotational 
structure of vr, v3 bands of 12’SnH4 studied experimentally in the recent work of 
Krivtsun et al. ( 24). This experimental study was especially devoted to the investiga- 
tion of those parts of the energy level structure where the qualitative phenomena 
should exist. 

The set of spectroscopic parameters for the vl, v3 dyad found from the experimental 
data (14) enables one to reproduce the energy-level system at J = 1, . . . , 16 with an 
accuracy of about 0.002-0.005 cm-r. The rotational structure of the vl, v3 dyad of 
12’SnH4 is qualitatively different from that of 28SiH4. The v3 band of i2’SnH4 possesses 
three clearly seen branches denoted usually as F-, F”, F+. They are split by a large 
Coriolis interaction B13 = -6 “2~$r,F1). 

Let us now discuss the results of the (semi)classical qualitative analysis of the vl 
and v3 states. The energies of the stationary points of the rotational energy surfaces 
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are plotted in Fig. 5 along with the system of quantum energy levels. The classical 
analysis shows the existence of several critical phenomena and diabolic points. The 
F” branch exhibits the C2 nonlocal critical phenomenon. The comparison of Fig. 6 
with Fig. 4 shows that this critical phenomenon is just the same as that studied in 
Sect. 4 in the E+ branch of the u2 band. As seen from Figs. 5 and 6, the F” energy 
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FIG. 6. The bifurcation analysis of the q F” branch of ‘%nH., See the note to Fig. 4. 

surface has a deep minimum in the C’, direction. The corresponding localized states 
forming the 6-fold clusters lie in the lower part of the F” branch and are well seen in 
the IR Q-branch spectrum of v3. We indicate as an example the lines 50, 5 1, 57, 73, 
83 in Fig. 4 and Table II of Ref. (14). For low J values there are no localized states 
in the upper part of the 8” multiplet because the Cz rotation axis is unstable and 
stability of the C3 rotation is too small (the corresponding Hessian value is positive 
but rather small). With increasing J the C, rotation axis becomes stable at J - 9. 
The corresponding maxima on the energy surface grow with J and become global for 
J > 11. Such a transformation is accomplished with the formation of 12-fold clusters 
in the upper part of the F” multiplet. The first cluster of this type is clearly seen in 
Fig. 5 for J = 13. It was experimentally observed in the Q-branch of the v3 band: see 
lines 78, 79 in Table II of Ref. (14). 

Similarly to the critical phenomenon in the v2 band, the increase of the stability of 
the C2 rotation is associated with the decrease of the C3 rotation stability. At J - 11 
the Hessian for the C3 axis goes to zero and the C3 nonlocal critical phenomenon 
takes place. It results in the formation of a minimum in the C3 direction instead of a 
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maximum. The saddle points which appear at J - 9 near the Cz axis and participate 
in the C, critical phenomenon at J - 11 are not shown in Figs. 4, 5, 6 for the sake 
of simplicity. The variation of the saddle point positions with increasing J was studied 
earlier in detail for some model problem ( 16, 25 ) . 

The simple classical approach enables us to study the rotational dynamics close to 
diabolic points as well. For the vl, 29 dyad of iz0SnH4 such a peculiarity arises between 
vi and the F- branch of v3. The v1 band is situated higher in energy than the F- one 
at J < 9. The vl and F- rotational surfaces possess respectively minima and maxima 
in the Cd direction. The 6-fold cluster is well-pronounced in the upper part of the Fm 

multiplet. This cluster is clearly seen in the R-branch spectra [see lines 55, 56 (J 
=6);77(J=7): 111,96(J=S); and 127, 128, 129 (J = 9) in Figs. 3, 4 and Table 
II of Ref. (14)]. For J - 9 two energy surfaces ( vI and F-) form one two-sheet surface 
with six equivalent diabolic points in the Cd direction. Figure 7 shows that the Hessian 
goes to infinity under diabolic point formation. Passing through the diabolic point 
corresponds to the transition of the 6-fold cluster from the lower surface to the upper 
one. The wave functions of the states at J - 9- 10 have a mixed v1 , v3 character. As 
J increases, the v1 band, which is now below the F- branch, becomes more pure and 
the probabilities of the transitions to this band decrease (see Fig. 8). 

Special attention should be paid to the sequence of the g-fold clusters, which are 
located near the extreme value of the C3 classical rotation energy at J = 10 - - - 16. 
Figures 5 and 7 show that these energies for both surfaces are very close at J = 10, 
. . . , 16 and the diabolic point is formed at J - 14. The Hessian for the C, points is 
large and the existence of a quantum state with the energy close to the diabolic point 
may be due only to “quantum tunneling” between two different energy surfaces. Thus, 
the resulting localized quantum states are highly mixed and the corresponding tran- 
sitions to these states are rather intense. At the same time, the calculation of the IR 
transition probabilities given in Fig. 8 shows that the R-branch transitions are even 
more forbidden than the corresponding v1 transitions for high J. This cluster exhibits 
the anomalous property in the Q-branch, where the transition probabilities are almost 
two orders larger than those of the forbidden vl and F- bands (see Fig. 8). The 
discussed sequence of g-fold clusters lies about 1 cm-’ above the J = 1 level of the 
F” branch and the corresponding spectrum is clearly seen on the blue side of the 
allowed Q-branch of the v3 band. Figure 9 shows the part of the experimental spectra 
(14) including the Q( lo), . . . , Q( 14) lines. The small isotopic shift of these lines 
verifies the large contribution of the v, vibration to corresponding states. At the same 
time, the g-fold clusters lie very close in energy to the reformed F- branch, which 
includes (2 J + 7 ) rotational levels at J > 12 (the formal pseudorotational quantum 
number R = J + 3 may be used for this branch). This branch is characterized by a 
rich cluster structure which includes a 12-fold cluster in the upper part of the multiplet 
and both 6-fold and g-fold ones in the lower part, in complete agreement with classical 
analysis. 

After intersection with the F- band, the u1 band includes (2 J - 5 ) rotational levels 
only. Thus, the psuedorotational quantum number R = J - 3 may be used for this 
band designation. In contrast to the F- branch there exist a number of delocalized 
quantum states in the u1 band at J = 10, . . . , 16 due to the small Hessian value at 
the C, and C, points on the corresponding energy surface. Moreover, Fig. 7 shows 
that the C, nonlocal critical phenomenon takes place at J - 13 and the CZ rotation 
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FIG. I. The bifurcation analysis of two upper branches of the Y, , Y, dyad of ‘*‘%I&: the Y, band and the 
F- branch of vs. The upper branch is denoted by a and the lower one by b. See the note to Fig. 4. 

becomes unstable again at J - 25. Such organization of critical phenomena would 
complete the overcrossing of the vI band similarly to that of the v2( E-) branch dis- 
cussed above. 

One may estimate on the basis of the parameters reported in Ref. (14) that the 
intersection of the vl and F” branches should occur when Jincreases. But the accuracy 
of the parameters is not sufficient to make a definite conclusion about the rotational 
structure of the vl, v3 bands for J > 20. Thus, the highly excited rotational states of 
the vI, v3 bands require further experimental and theoretical study. The v1 band for 
J > 12, the evolution of 8-fold clusters in the F- band for J > 16, and relative positions 
of the p and vI bands at high J values are of primary interest. 

6. CONCLUSION 

The main purpose of the present article was to demonstrate the simplicity and 
efficiency of classical qualitative analysis of concrete molecular systems. The classical 
description enables one to clearly understand the rovibrational dynamics in rather 
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complicated cases. It seems to be ultimately useful for the study of more highly excited 
rovibrational states. The location of qualitative changes in the rotational structure 
(both critical phenomena and diabolic points) can indicate the most interesting energy 
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regions for further experimental study and even give some ideas on the more adequate 
construction of the effective Hamiltonians taking into account the universal Hamil- 
tonians for different critical phenomena (8). It should be noted that the theory of 
critical phenomena (8) and the interpretation of the diabolic points ( 12, 16) as well 
are phenomenological approaches similar to the Landau theory of second-order phase 
transitions in macroscopic physics. The open problem now is the development of the 
microscopic theory of qualitative changes in finite-particle systems which would relate 
them with intramolecular dynamics. This problem is closely connected to transfor- 
mation of effective spectroscopic parameters to molecular constants. 

APPENDIX: ROVIBRATIONAL TENSOR OPERATORS INVARIANT 
WITH RESPECT TO THE .SO( 3) GROUP 

Let us consider five vibrational annihilation (creation) operators for the u2 and u4 
modes as components of the spherical tensor operator of rank 2: 

V2’ = (a:, a?, a? ,a,F2.a?). (A-1) 

Supposing now that the rovibrational Hamiltonian for the v2, v4 dyad must be SO( 3 ) 
invariant, we can represent any such operator in the form 

[s[V+(2)*V(2)](K)*Rn(K)](O), s = (-l)“, (A-2) 

where K is the rank with respect to the SO( 3) group. In order to relate the operators 
(A-2) with that constructed in the coupling scheme for the cubic symmetry group it 
is natural to use the chain ofgroups SO( 3) > 0. In this case we have for the vibrational 
operators the form 

(V +(2),V(2)); = (-1)“(2K+ 1)“’ [P]-“~ 2 K 
P I.P” 

(V;!%V$)), 

(A-3) 

where K(pj ptt p ” ‘” J, is the isoscalar factor for the chain of groups considered (26). Ac- 
cording to (A-3) the SO( 3)-invariant Hamiltonian of the harmonic oscillator includes 
only the term 

Ho = (5)-“2 C C ((a+)F(a)F). (A-4) 
G=E,F2 $=I.. .[G] 

The part of the u2, u4 Hamiltonian linear in rotational angular momentum operators 
includes only one SO ( 3) invariant tensor, 

H, = ((V+(2),V(2))(1)RI(I))(o) = 5-1/2[(((a:)F’(a4)Fz)F’ 

- 2”2e((a;)“(Q)F2)FF1)*R l(l.F~) AI = 5-10 ~~C~,‘I’ _ 2’/2u&LFi’ 1 1 1 1. (A-5) 

The expression (A-5 ) is the Coriolis interaction for the u2, u4 dyad under the supposition 
of the SO( 3) invariance. It should be mentioned that the approximate classification 
of the rotational states and the construction of the irreducible tensor operators, taking 
into account an additional classification with respect to the irreducible representations 
of the SO( 3) group, have been discussed repeatedly in the literature (27). 

RECEIVED: December 14, 1988 
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