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Abstract
We present a method which enables one to calculate generating functions
counting the number of linearly independent tensor operators of different
degrees which should be included in phenomenological effective Hamiltonians
constructed from boson creation and annihilation operators for several
degrees of freedom in the presence of resonances and symmetry.
The method is based on the application of the Molien generating function
technique and the Hadamard product of rational functions. The latter leads to
the representation of the answer in a form of a rational function. The technique
is illustrated by the example of effective Hamiltonians for vibrational polyads
in a methane-type molecule, which is a dynamical system with nine degrees of
freedom formed by one non-degenerate, one doubly degenerate and two triply
degenerate modes in resonance 2:1:1:2:2:2:1:1:1.

PACS numbers: 02.10.Ox, 03.65.Fd, 33.15.−e

1. Introduction

Phenomenological description of many different physical problems is based on approximate
models constructed in terms of harmonic oscillator creation and annihilation operators (bosonic
operators). The number of degrees of freedom being finite, the most essential feature of the
model which should be properly taken into account is the symmetry and resonance conditions,
which impose the existence of additional exact or approximate integrals of motion and good
quantum numbers. A typical example which we had in mind when preparing this paper is
the vibrational structure of molecules. In the simplest approximation, molecular vibrations
are described by a system of nonlinearly coupled anharmonic oscillators. In the presence
of symmetry, different vibrational degrees of freedom can be classified by the irreducible
representations of the symmetry group. For sufficiently high symmetry (cubic, for example)
this leads to the formation of degenerate vibrational harmonic modes. An additional resonance
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condition between vibrational modes which also typically exists in many molecular systems
results in the formation of the so-called vibrational polyads formed by a group of vibrational
states [5, 20]. Rather complicated internal organization of such polyads can be qualitatively
understood through the topological analysis of corresponding classical dynamical systems [5].
In turn, the global topology of a single or multiple reduced classical phase space is reflected
in the generating function giving the number of invariants for the associated quantum problem
[7, 16, 28]. This explains, in particular, more fundamental interest in the generating function
approach rather than in simple enumeration applications.

A nontrivial example of resonances and polyads is given by the methane molecule, CH4.
This molecule has equilibrium configuration with tetrahedral symmetry (point group Td ,
which is isomorph to permutation group of four identical objects). As a consequence, its nine
vibrational degrees of freedom are classified by the symmetry group as one non-degenerate
mode, ν1, one doubly degenerate mode ν2, and two triply degenerate modes ν3, ν4. Moreover
the ratio between corresponding harmonic frequencies can be relatively well approximated
by simple integers as ν1:ν2:ν3:ν4 = 2:1:2:1 with the corresponding classical reduced phase
space being the complex eight-dimensional weighted projective space. Due to this resonance
condition the vibrational states form so-called polyads. The polyad number N is defined
as a weighted total number of quanta on all modes which takes into account the resonance
condition, i.e. N = 2n1 + 2n3 + n2 + n4, where ni is the number of quanta on ith mode.

In order to construct the effective Hamiltonian describing the internal structure of
vibrational polyads in an AB4 molecule of Td symmetry in terms of creation and annihilation
operators for different harmonic vibrational modes, it is necessary to take all invariant operators
written schematically in the form of tensor products in the Td group as{[(

a+
1

)s1 × (
a+

2

)s2 × (
a+

3

)s3 × (
a+

4

)s4
]� × [(a1)

t1 × (a2)
t2 × (a3)

t3 × (a4)
t4 ]�

}A1
,

with additional restriction 2s1 + s2 + 2s3 + s4 = 2t1 + t2 + 2t3 + t4, which follows directly from
the resonance conditions. Along with Td geometrical invariance imposed on the Hamiltonian
by physical requirements, the invariance with respect to time reversal should typically be
imposed as well. The difference between spatial symmetry and time-reversal invariance is
technically important, because elementary creation (annihilation) operators in most cases
could be chosen as transforming according to irreducible representations of the symmetry
group, whereas time-reversal operation transforms creation operators into annihilation and
vice versa. From the other side, the resolution of the ambiguity problem for effective operators
(well known in molecular rotational spectroscopy as Watson reduction [26]) should be done
for phenomenological vibrational Hamiltonians as well, and to realize this transformation the
generators of the corresponding unitary transformations should be invariant with respect to the
symmetry group, but should change the sign under time reversal. The number and the type of
these generators can also be predicted with generating functions in any order.

The step-by-step construction of invariant operators from elementary tensors is well
known and is not difficult. Systematic application of the tensor coupling procedure based on
the Clebsh–Gordan coefficients is the standard tool of group theoretical method applications
in physics. Irreducible tensor methods [6] are well adapted to finite groups [9]. Practically,
for all point groups and typical chains of groups of interest in molecular applications, the
coupling coefficients and, naturally, characters are well described and easily calculable [2].

Less known are more global methods of invariant theory based on the generating function
technique, which allow us to give the symbolic description of the whole algebra of invariants
and in particular to give formulae for the number of invariants which can be constructed in
any degree starting from a given set of elementary tensors [3, 10, 16, 18, 22–24]. Relatively
popular now, the application of continuous symmetry groups to molecular models originated
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mainly from atomic [14] and nuclear [13] problems can also be successfully treated within the
geometric invariant theory [21] by the generating function symbolic approach, but we leave
these problems outside the scope of the present paper. We show below what kind of results
can be obtained by applying the generating function method using as an example one concrete
problem of molecular physics.

2. Molien function

The crucial initial point is the Molien theorem [1, 16, 17, 22–24] which in its simplest form
enables one to construct the generating function for a number of irreducible representations
of the given type in the decomposition of the Nth symmetric power of one irreducible
representation. More exactly, for the finite group G, for the initial representation �i and
for the final representation �f the generating function,

MG(�f ← �i; λ) = |G|−1
∑
g∈G

χ̃�f (g) det(In − λ�i(g))−1 =
∞∑

N=0

CNλN, (1)

gives the numbers CN indicating how many times the final representation �f presents in the
decomposition of the Nth symmetric power of the initial �i representation. In (1) |G| is the
order of the finite group G,χ� is the character of the irreducible representation, tilde means
complex conjugation, and λ is a dummy variable. This generating function can typically be
written in the form of a rational function of some special form:∑

k ckλ
k

(1 − λd1)(1 − λd2) · · · (1 − λds )
,

which has a symbolic meaning specifying the existence of a certain number of functionally
independent denominator invariants and linearly independent though algebraically dependent
numerator invariants, thus giving the description of the integrity basis (or in other words, the
homogeneous system of parameters [25]). Alternative symbolic interpretations of generating
functions can be done in terms of a set of generators (which are typically functionally
dependent) and a set of relations (syzygies) between them, a set of relations between relations
etc [12].

Calculation of the generating functions for the number of invariants or covariants
constructed from elementary tensors transforming according to a given irreducible or reducible
representation of finite groups is just a relatively simple task as soon as the character table is
known. The generating functions for invariants and covariants constructed from irreducible
representations of all 3D-point groups are given, for example, in [18]. Relatively detailed
application of the generating function method for the construction of potential functions for
tetrahedral molecules was recently realized in [3]. Another direct physical application [27] of
such an approach is the construction of a generating functions for a number of quantum states
in vibrational polyads, formed by overtones of one or several degenerate or quasi-degenerate
modes [20, 28].

A less trivial problem is the construction of a generating function for diagonal within
polyads operators. This can be achieved by extending the geometrical symmetry group
with the dynamical symmetry responsible for the resonance or by constructing the required
generating function from two generating functions, one for creation operators, another for
annihilation operators. The nontrivial part consists of introducing the important restriction on
the numbers of creation and annihilation operators which leads to operators diagonal within
polyads. Such construction was realized, for example, in [19]. In this paper, a slightly different
approach is proposed which is based on the construction known as the Hadamard product of
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formal power series [8, 11, 15, 25]. The advantage of this approach is due to the possibility
of taking into account, in a simple way, additional symmetry requirements, which imposed
simultaneously on creation and annihilation operators, such as invariance with respect to time
reversal, and to represent the answer again in the rational function form.

3. The rational form of generating functions

In this section, we present several simple results on the explicit form of rational generating
functions constructed through the Hadamard product of rational functions. We remind
readers here that the Hadamard product of two formal power series f (z) = ∑

n�0 fnz
n

and g(z) = ∑
n�0 gnz

n is defined as their term-by-term product [8, 11, 15, 25]:

f (z) � g(z) =
∑
n�0

fngnz
n. (2)

The following fact is known: the Hadamard product of two rational functions is a rational
function [8, 11, 15, 25]. We use this statement below when converting the formal power series
into a rational function form.

3.1. Diagonal operators for two modes in 1:1 resonance with trivial symmetry

We start with an extremely simple example of two A modes in 1:1 resonance with a trivial
symmetry group. The generating function for creation (or equivalently for annihilation)
operators takes the form depending on two dummy variables (λ, k) which count independently
the degree of creation operators and the associated modifications of the polyad quantum
numbers:

g(A ← 2A, λ, k) = 1

(1 − λk)2
=

∞∑
n=0

(n + 1)λnkn. (3)

Now in order to construct the generating function for diagonal operators we need to form
the power series in k with coefficients being squares of coefficients in (3). This operation is
exactly the Hadamard product (square) of formal power series [8, 11, 15, 25]. We denote the
Hadamard product by �k , and its application to generating function (3) gives for the Hadamard
square

1

(1 − λk)2
�k

1

(1 − λk)2
=

∞∑
n=0

(n + 1)2λ2nkn = 1 + λ2k

(1 − λ2k)3
. (4)

The degree of auxiliary variable λ now counts the total degree of creation and annihilation
operators. At the same time the variable k counts �n associated with only creation (or only
annihilation) operators forming the diagonal operator.

Formula (4) follows directly from the identity (where t replaces the λ2k):

d

dt
t

d

dt
(1 + t + t2 + t3 + · · ·) =

∞∑
n=0

(n + 1)2tn, (5)

d

dt
t

d

dt

(
1

(1 − t)

)
= 1 + t

(1 − t)3
. (6)

In order to take into account only time-reversal invariant operators, we need to use instead
of the simple Hadamard square the symmetrized Hadamard square [(g(λ) �k g(λ) + g(λ2)]/2
which is an analog of the symmetrized square of an irreducible representation. As soon as the
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normal Hadamard square is known, the calculation of the symmetrized square is not difficult.
Thus, for the generating function (3) its symmetrized Hadamard square, counting the number
of diagonal time-reversal invariant operators, becomes

1

2
[(g �k g) + g(λ2)] = 1

2

(
1 + λ2k

(1 − λ2k)3
+

1

(1 − λ2k)2

)
= 1

(1 − λ2k)3
.

3.2. Diagonal operators for the doubly degenerate E mode for the Td group

In the case of the doubly degenerate mode we need to calculate first the generating functions for
operators of each symmetry type constructed from elementary creation/annihilation operators
only, and then to take the sum of symmetrized Hadamard squares of these generating functions.
The resulting generating function has rather a simple form (with TR standing for time-reversal
invariant, and �n = 0 indicating diagonal in polyad quantum number n operators):

g(A1, TR,�n = 0,← E; λ, k) = 1

(1 − λ2k)(1 − λ4k2)(1 − λ6k3)
. (7)

The k-dependence is not important in this example, because the mode is degenerated by the
symmetry and consequently the resonance is 1:1. Curiously this generating function has the
same form as the generating function for Td(O)-invariant rotational operators, or for invariant
operators constructed from x, y, z variables in the case of cubic Oh symmetry. Consequently,
the denominator invariants have very simple tensorial form:

V2 = (a+a)A1 , V4 = [(a+a+)E(aa)E]A1 , (8)

V6 = [(a+a+a+)A2(aaa)A2 ]A1 . (9)

These three operators form the integrity basis, and an arbitrary diagonal time-reversal and
Td -invariant operator can be written as a polynomial in V2, V4, V6.

3.3. Diagonal operators for the F2 mode for the Td group

For the triply degenerate mode the same procedure leads to a more complicated generating
function:

g(A1, TR,�N = 0;← F2; λ) = 1 + λ6 + λ8 + λ10 + λ12 + λ18

(1 − λ2)(1 − λ4)2(1 − λ6)(1 − λ8)
. (10)

The number of terms in the denominator now is equal to five, and the numerator includes six
terms. Note that the form of the generating function for time-reversal operators is simpler than
the corresponding function for all possible operators, which was calculated explicitly for the
same problem about 20 years ago [19]. We have omitted the k-dependence from the generating
function (10), because the presence of k gives no new information for the degenerate modes.

3.4. Diagonal operators for polyads formed by A1 and E modes in 2:1 resonance

The nontrivial character of k dependence appears in the case of any k1:k2 resonances different
form 1:1. We present as an example the 2:1:1 resonance between non-degenerate A1 and
doubly degenerate E modes of tetrahedral molecules.

The total generating function describing all diagonal time-reversal and Td -invariant
operators constructed through arbitrary intermediate representations has the following form:

g(A1, TR,�N = 0,← A1 ⊕ E(2:1); λ, k)

= 1 + λ7k4 + λ8k5 − λ12k7 − λ13k8 − λ20k12

(1 − λ2k)(1 − λ2k2)(1 − λ3k2)(1 − λ4k2)(1 − λ6k3)(1 − λ9k6)
. (11)
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The generating function (11) is given in its simplest, most reduced form which has six terms in
the denominator and both positive and negative contributions in the numerator. Naturally, there
should be only five functionally independent invariants for this problem and consequently the
six terms in the denominator correspond to a system of invariants related by syzygies. We do
not want to discuss here the explicit construction of a system of syzygies. This example is
given in order to demonstrate that even in the case of relatively simple generating functions
the structure of the associated module of invariant functions can be rather complicated. To
see the really complicated case we present below the generating function for time-reversal
invariant diagonal operators for vibrational polyads in a CH4 molecule taking into account all
nine vibrational degrees of freedom with resonance 2:1:1:2:2:2:1:1:1 between them.

4. The rational form of the global generating function

From the point of view of practical applications only the several first terms of the power series
decomposition of the generating function are of some interest. These terms can be obtained
in a quite simple and straightforward way (see the appendix, expressions (A.3, A.4), which
solves the problem and does not require us to find the rational function form for the Hadamard
square. Nevertheless from the general abstract point of view it is tempting to give the rational
form of the generating function which after its power series decomposition can give the correct
number of operators in an arbitrary degree. We present below this rational function depending
on one parameter. It turns out to be rather complicated. In the most reduced form this rational
function has a numerator of degree 74, whereas its denominator includes 17 factors with the
sum of their degrees equal to 92. We present this function below with just one purpose: to
show that the same standard method leads to the rational form even in such a cumbersome
case.

G(Total for ν1:ν2:ν3:ν4 = 2:1:2:1; λ) = NumerTot

DenomTot
, (12)

where

DenomTot = (1 − λ)4(1 − λ2)3(1 − λ3)(1 − λ6)2(1 − λ8)2(1 − λ9)3(1 − λ12)2,

NumerTot = λ74 − 4λ73 + 7λ72 − 5λ71 + 16λ70 − 22λ69 + 85λ68

− 9λ67 + 253λ66 + 77λ65 + 872λ64 + 512λ63 + 2183λ62 + 2161λ61

+ 5175λ60 + 5608λ59 + 11 933λ58 + 12 618λ57 + 23 269λ56

+ 27 037λ55 + 41 742λ54 + 48 273λ53 + 72 619λ52 + 79 476λ51

+ 111 449λ50 + 125 265λ49 + 160 991λ48 + 175 577λ47 + 222 701λ46

+ 232 021λ45 + 280 315λ44 + 292 864λ43 + 334 256λ42 + 337 189λ41

+ 381 867λ40 + 368 588λ39 + 400 082λ38 + 385 396λ37 + 400 082λ36

+ 368 588λ35 + 381 867λ34 + 337 189λ33 + 334 256λ32 + 292 864λ31

+ 280 315λ30 + 232 021λ29 + 222 701λ28 + 175 577λ27 + 160 991λ26

+ 125 265λ25 + 111 449λ24 + 79 476λ23 + 72 619λ22 + 48 273λ21

+ 41 742λ20 + 27 037λ19 + 23 269λ18 + 12 618λ17 + 11 933λ16

+ 5608λ15 + 5175λ14 + 2161λ13 + 2183λ12 + 512λ11 + 872λ10

+ 77λ9 + 253λ8 − 9λ7 + 85λ6 − 22λ5 + 16λ4 − 5λ3 + 7λ2 − 4λ + 1.

Note that although the number of (1 − λk) factors in the denominator of the total generating
function is equal to 17, these factors cannot be interpreted as corresponding to algebraically
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independent invariants in spite of the fact that there should be exactly 17 such algebraically
independent invariants. Naturally, there are no linear diagonal operators, whereas the
generating function has in the denominator the (1−λ)4 factor. We can multiply the numerator
and the denominator by the same factor in order to get the numerator with only positive
coefficients. To get this, it is sufficient to multiply both the numerator and the denominator
by a factor, which is a polynomial of degree 10: (1 + λ)4(1 + λ2)3. The so-obtained rational
function will have only positive terms in the numerator (which becomes a polynomial of
degree 84). But in principle this is not a guarantee that this form of generating function
corresponds symbolically to the integrity basis construction. In any case, all are not of
practical use because the number of terms in the numerator becomes equal to 27 · 789 9480,
where 789 9480 = 23 · 32 · 5 · 21 943 is the algebraic sum of coefficients in the numerator of
the most reduced form of the generating function.

5. Conclusions

We have demonstrated the relevance of the ‘Hadamard product’ operation to the construction
of the generating functions for effective operators in terms of bosonic creation and annihilation
operators under additional restriction on the relative numbers of these operators. Such
additional requirement naturally appears, for example, for vibrational polyads formed by
vibrational modes in resonance. Adding a second parameter into generating functions allows
us to take into account arbitrary resonance relations between vibrational modes. Application
of the Hadamard product operation leads to the representation of the final result in a rational
function form, and this is the main message to the readers of this paper. Application of the
same technique to transition operators or to any covariants is straightforward for finite groups
with known character tables. Extension to continuous groups is more delicate due to the
fact that even for rather simple examples the module of covariants turns out not to be free
[16]. Further qualitative analysis of effective operators constructed in terms of the integrity
basis will certainly use new mathematical tools like nonlinear algebra [4] which are currently
used mainly in high-energy physics, string theory and quantum gravitation. To mention the
relevance of ‘non-conventional’ mathematical tools to ‘trivial’ molecular problems is another
goal of the present communication.

Appendix. Calculation of the initial terms of the generating function

As soon as we have the power series representation for the generating functions giving the
number of tensor operators of �fin symmetry type constructed from elementary operators, it is
quite easy to calculate the associated series for the operators diagonal in �n and in addition
satisfying the time-reversal property. This can be done in the following way. Let us write the
generating function for the number of creation operators of �fin symmetry formed from initial
operators spanning the �in representation in its formal power series form:

g(�fin, �in; λ, k) =
∞∑

n=0

P �fin
n (λ)kn, (A.1)

where the polynomials P �fin
n are the initial terms of the power series representation of the

generating function. The final expression for the diagonal and time-reversal invariant operators
constructed from (A.1) has the form

g(TR,�n = 0; λ, k) =
∑
�fin

∞∑
n=0

1

2

([
P �fin

n (λ)
]2

+ P �fin
n (λ2)

)
kn. (A.2)
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We can name this operation the symmetrized Hadamard square because the standard Hadamard
square for each power series in k gives the contribution

∞∑
n=0

[
P �fin

n (λ)
]2

kn.

The passage to (A.2) corresponds to the replacement of the operation of standard square by
symmetrized square in the representation theory.

From the point of view of practical construction of operators of different degree it may be
more interesting to represent some initial terms of the formal series instead of total generating
function (12). We illustrate here this partial representation by collecting terms with the same
value of λ and with different k values in one group,

1 + (2k + 2k2)λ2 + 4k2λ3 + (7k4 + 13k3 + 10k2)λ4 + (30k3 + 31k4)λ5

+ (36k3 + 128k4 + 65k5 + 18k6)λ6 + (143k6 + 184k4 + 297k5)λ7

+ (45k8 + 234k7 + 771k6 + 713k5 + 125k4)λ8 + · · · . (A.3)

Expression (A.3) follows directly from the calculation of several first terms in the power series
(A.2). One should note, that expression (A.3) includes all k-dependent contributions up to λ8

terms. In order to get the complete calculation of the number of operators up to degree n, (i.e.
up to λn in λ series), it is necessary to calculate the contributions to symmetrized Hadamard
square up to kn as well.

It is also interesting to see the simplified version of the same series decomposition where
the role of k is neglected, i.e., by imposing k = 1. In such a case we have the series whose
coefficient gives the number of tensor operators of the given degree

1 + 4λ2 + 4λ3 + 30λ4 + 61λ5 + 247λ6 + 624λ7 + 1888λ8 + · · · .
This decomposition coincides with the first terms of the power series expansion of the total
generating function (12).
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