
Chemical Physics 31(19i8) i 13-423 
0 North-Holland Poblishing Company 

VIBRATION-ROTATION HAMILTONIAN FOR NONRIGID TRIATOMIC MOLECULES 

WITH DIATOMIC RIGID CORE 

V.A. ISTO~IN and N.F. STE~~OV . 

MoLmdar Spectro~sopy Laboratory, Department of C?temistry, Mosmrv State ciniversity, 
Mosco w 1 I 7 234, USSR 

Received 28 December 1977 

Several semi-rigid model ~rnilto~a~ are constructed for cakulation of the vibration-rotation spectra of nonrigid tri- 
atomic molecules ~vith diatomic rigid core. The models proposed are applicable to motectdes with an elliptica nom&Id ’ 
trajectory. This means that the potential energy surface corre~ond~g to the inreraction between the external atom and 
rigid core possesses minima close to eltipticd surface. Such molecdes as bfCN (M = Li, Na, K) are appropriate examples. 

In recent years considerable interest has awoken in the ~ves~~tions of nonrigid ionic or van der Waals male- 
cules (see, for example, reviews [ i,2])_ The simplest molecules of this type are the triatomic molecules composed 
of a diatomic rigid core and an atom which can move almost freely around this core. MCN ionic molecules @f is 
an alkali metal atom) or.van der Waals complexes (Ac02, ArHCl, ArN$ are appropriate examples. 

In this paper we generalize the method proposed earlier [3-51 for the c~culation of vibration-rotation levels 
for nonrigid triatomic moIecules with diatomic rigid core. We have developed the elliptical model which enabIes 
us to treat the problem with a higbIy nonspherical potential For the external atom motion. 

We must take into account the chemical structure of the molecules to make the proper choice of internal varia- 
bles. It is known [6] that for LiCN type molecules almost free rotation of the cation takes place at rather high 
temperatures. IF we suppose the LiCN molecule to be composed of ions (the so-called ionic model) we can indi- 

* Pekmanent address: Molecular Spectroscopy Laboratory, Department of Chemistfy, MOSCOW State Universit’y, Moscow 117 234, 
USSR. 

Fig. 1. Trajectories of nonrigid cation motion for different relative sizes of the ions. 
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cate the possible ways of the cation motion. This way will be called the nonrigid trajectory. The corresponding 
motion is the bending motion. Fig. 1 shows the possible ways of the cation depending on the size of the cation 
and anions. It can be seen that this trajectory may take the form of a slightly or strongly deformed ellipsoid and 
a slightly deformed sphere. The radial vibration of the cation seems to have a rather high frequency and small am-. 
plitude. For example, the Ismail data [7,8] show that the radial frequency for MCN molecules in an inert gas ma- 
trix is several times larger than the bending mode. So the ionic molecules have in essence only one large amplitude 
coordinate, but this coordinate is very complicated. The slightly bound van der Waals complexes surely possess 
two large-amplitude coordinates, bending and radial ones, but these coordinates are almost independent. The ex-’ 
perimental data on the ArO, and ArN2 molecules bupport this suggestion [9,11]. 

We have considered earlier the simplest model for a triatomic molecule with two large-amplitude coordinates 
[4] _ To describe the position of the atom moving around the rigid diatomic core we used spherical coordinates 
which were supposed to be nonrigid ones. We call such model a spherical one. This model is well suited for the 
kinetic energy representation, but the potential energy inay have a rather complicated form depending on the rnole- 
cule. So the procedure developed in ref. [4] requires rather elaborated+alculations in some cases due to the crude 
separation of nonrigid variables. 

The purpose of the present article is to improve initial approximate harniltonians which result in the construc- 

tion of the basis for variational calculations_ Here we propose a model adapted to the nonrigid trajectory of ellip- 
tical form. We investigate two possibilities. Firstly we use a change of variables which transforms the elliptical tra- 
jectory into a spherical one. In this case the kinetic energy operator may be written as the sum of the operator for 
the spherical case and some additional terms responsible for deviations of the real operator from the spherical one. 
Even in the case when the trajectory may differ from an elliptical one we propose to use the same change of varia- 
hlea. hecmm wrh za nrrw~d111r~ r~wltc in za mther rimnl~ fnm nf the tinr=ti~ r=noro<r nnmrotnr _.__ ,___ -__ --_* .-=.-- “__.” ._-_.._ _.- .L -.-. ‘^‘L= 1” _“I... “I L1S” ._XUL.” W.S”“6, “~~‘UC”” 

On the other side we can use elliptical coordinates. We have shown that in spite of the complicated form of the 
kinetic energy operator it is possible to construct some effective one-dimensional equations for the description of 
the vibration-rotation problem. In this paper we consider only triatomic molecules but the method proposed may 
be easily generalized to molecules composed of an atom possessing almost free motion around a linear rigid core 
(ArOCS is an appropriate example [12]). The generaIization to the case of “nonlinear rigid core + atom” systems 
is also possible. 

2. Total hamiltonian 

The vibration-rotation hamiltonian foi triatomic molecules in Cartesian coordinates has the form 

(1) 

where Fa, F,,, r, are vectors characterizing the positions of the atoms in a laboratory fured coordinate system. We 
assume that a and b form the rigid core and atom c moves around this core. We use Jacobi coordinates to separate 
the centre-of-mass motion (fig. 2): 

b 

Fig. 2. Jacobi coordinates for a triatomic system. 
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(2) 

In Jacobi coordinates the hamiltonian (1) may be rewritten as 

H=-&AE -‘A--lA_.f@,F), 
c.m. 2l-Q R 2P2 r 

M=ma+mb+m,, pl,‘=mil +rnbl, p;l=(ma+mb)-l +m-’ . 
C (3) 

Now we transform the hamiltonian to the molecule-fKed coordinate system. It is suitable to use the coordinate 
frame connected only with the rigid core and take the hamiltonian introduced earlier for diatomic molecules 

P3J41 

(4) 

Here L,, Ly, L, are the angular momentum operators for the particle associated with the vector 7, L, = L, + iL,,, 
J is the operator of the total angular momentum. The z-axis of the body fmed coordinate system aligns along th’e 
vector R. i has the spherical coordinates, r-, 8, C$ in the body fmed system. The coordinates R, I-, B are the internal 
ones. Let us now average the hamiltonian (4) over the rigid variable R with the vibrational wavefunction. We ob- 
tain the effective operator, describing the nonrigid internal motion and the rotation of the system as a whole. This 
effective operator sureIy corresponds to some concrete vibrationabtate of the rigid core 

H-L,_+ ’ -[[J2tL2-(2L,2+L,J_+L_J,)]+V(r,8). 
2p2 r 24R; 

Here V(r, 6) is the potential V(R, r, 0) averaged over the variable R. R. is some effective value of R resulting from 
the averaging of l/R2 with the vibrational wavefunction. The operator (5) is the initial one for the further use. 
When the potential can be represented in the form 

V(C 0) = v,(r) + v,(e) + W(J-, 0) , 

where W(r, 0) is small, the separation of variables in spherical coordinates is a rather good approximation. The re- 
sulting auxiliary operators 

Ho= --‘--[J2-(2L,2+L+J_+L_J+)]+ 
215R; L2 + ‘@) ’ 

(6) 

Hr = - &$ d2/dr2 -I- V,(r) , (7) 

are just the operators which were used in our previous publication [4] for the variational solution of the vibration 
rotation problem. But the algorithm proposed cannot be applied to the case with a large W-term and particularly 
to the case with a significantly elliptical nonrigid trajectory_ So we shall try to modify the method used earlier 
adapting it to the special case of an elliptical potential. We suppose that the potential V(r, 0) possesses minima at 
every value of 8 and the set of these mi.nimum points form the elliptical surface which may be described as follows 

x2/b2 +y2/b2 + z2/a2 = 1 _ 

Then we do the change of variables which transforms the elliptical surface into a spherical one (see, for example, 
the problem from ref. [1.5]) 

X = @h-,)x’, y = (b/r&', z = (Q/r&’ . (8) 
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We have the equation for the sphere of the radius r. in new variables. We use now the same series expansion for 
the potential V as in the spherical model 

Y= iT(r, Sj= C c (~_~-~jk~0$ti~~ 
k,m km _ 

It must be noted that for the most simple elliptical potential of the form V=k(X - Q2, the transformed poten- 

tial may be approximated as (see fig_ 3) 

V = k1(r - ro)2 + _k* cos% (r - ro)2 i- . . . _ 

The second term is responsible for the interaction of radial and bending motions. It increases when the nonrigid 
trajectory becomes more elliptical. This limits surely the applicability of the method proposed to cases of slightly 
elliptical potential surfaces. But it is just the situation which takes place for LiCN type molecules. 

We transform now the hamiltonian (5) to new variibles 

r2 a,=a2+~+ a2 _ 0, ++Xb2-a2M_ 
ax2 ay” a.9 62 r’ a2b’ az’2 ’ 

or equivalently 

(10) 

(11) 

One or another form of the operator may be more suited depending on the concrete model. Below we will never 
use primes for new variables and the change of variables will be denoted by an arrow (+). 

The change of variables introduced above does not affect the operators L,, J2, J+_ To transform the operators 
L, and L2 we define new operators Ei : 

E2 = (5~ + iy)a/az , 

which are non-hermitian and obey the relation 

(E,)+ = ET _ 

Under the change of variables 

Ei -+ @IaH’, , 

and 

a 
L++&f 

a2-b2 
ab E,, 

Y&b --__ 
.I_ 

--__ - 
‘\ 

---__ ‘.:;- 
., \ \ 

y’,‘, 
’ ‘\‘\ k$_ \, < \ 

\\’ 
’ ‘, : 

’ : 
,r: 

0 z 

(12) 

(13) 

(14) 

Fig. 3. Change of the potential shape under the scale transfor- 
mation of variables (8). 
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Taking into account relations (lo), (14) and (15), the hamiltonian (5) may be written as 

- !!(L+ J_ f L_ J+) - ‘y (E+J_ + E-J+)] + v(r. 0) - (16) 

The hamiltonian (16) is obtained by using the body fmed coordinate frame connected only with the rigid core. 
It is more suited to connect the moving frame with the “nonrigid vector” r when the van der Waals molecules are 
considered. Another kind of the coordinate transformation is to be used in this case to take into account the ellip- 
tical character of the nonrigid trajectory. This problem is treated in appendix A. The disadvantage of the operator 
(16) is the coincidence of the center of mass of the rigid core and &e center of the elliptical potential surface. For 
treating the isotopic substitution problem it is desirable to have the possibility of moving the center of the elliptical 
poiential surface along the rigid core line. We consider the corresponding modifications in appendix B. 

2.1. Bending-rotation and radial operators 

We consider now the variational method of solving the eigenvalue problem for the operator (16). First of all we 
introduce the operators H, andH, similar to operators (6) and (7) Surely operators (6) and (7) may be used as 
auxiliary operators for the hamiltonian (16) but in such a case the elliptical character of the transformed kinetic 
energy will be neglected. To reach a more accurate expression for the HQ and H, operators it is necessary to inves- 
tigate the matrix elements (nZ’m’lA Inlm), where n is the quantum number for the oscillator over (r - ro); Z, m 
are quantum numbers for the spherical harmonics, YI, , -A is any operator contributing to the hamiltoni& (16). 
These matrix elements are discussed in appendix C. Comparing the hamiltonian (16) and expressions (C.6)-(C.11) 
leads to the Inclusion into H, of some additional terms arising from formula ((2.6). In such a case H,. has the form 

d2 Hr=_ 1 r2 o d 2 1 r-@‘2-Q’) 

2f12 b2 dr2 2fl2 a2bz 
2COS 0 + V,(r) . (17) 

This expression of the operator is not good for the simple variational method due to the parametrical dependence 
on the angle 8. Nevertheless it may be used if the adiabatic approximation for the separation of radial and angular 
variables is applicable, This approximation will be considered separately and here we limit ourselves to the simple 
factorization method and use the auxiliary radial operator, H,, of the form (7). 

To obtain the bending rotation operator He we average the hamiltonian (16) with the vibrational function de: 
scribing the motion over the variable (r - ro). The resulting operator HO depends on the vibrational function used 
but we neglect such a dependence in the zero order approximation. Thus using (C.6)-(C.ll) we obtain the follow- 
ing expression for the %gid” bender-rotation operator: 
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(&2OL2 + L2 sin2/3) + Q2L3b2-2 

b2 = 

(si&JL2+L2 _ 4 sm 0 - 2 sin20 L,2) - ;(L+J_ + L_ J+) 

-v(E+J_ +E_J+)] + f’-,(e) + v,(e) _ 08) 

Here Vk(f3) is the additional potential obtained from the .averaging of the kinetic energy; E, are the E+ operators 

integrated over the radial variable. The kinematic potential has the form 

Vk = ___ a2 - b2 (1 - 3 c&Q) + A.-- 
4p2a2b2 4@; [ 

y (1 - 3 cos%) 

2 
(sin40 - 12&e c0s2e + 3 Me) 1 . (19) 

In conclusion to this section we briefly discuss the general -method of fmding eigenvalues and eigenfunctions of 
the operator (16). 

(a) We diagonalize the operatorHr (using harmonic oscillator functions, for example). 
(b) We diagonalize the operator H, in the basis 

2-1’2[D;oy& 4) ‘&o Y[_k(e’ $)I, $, y,(& 4) 9 

where D&,(cr, fl, 0) are generalized spherical functions, depending on two Euler angIes connecting the laboratory 
fmed frame and the body fmed one. 

(c) The operator (16) is diagonalized in the basis obtained by multiplication of the eigenfunctions of the opera- 
torsH, andHe. 

The method of solution is just the same as was used by us earlier [4]. The only disagreement is the most com- 
plicated form of operators adapted to some special cases of the potential energy surface. 

2.2. Strong elhptfcity 

We can generalize the spherical model to the case of a strongly elliptical potential surface_ Let a nonrigid trajec- 
tory be defmed by 

r, =r(e)=~O(l+~,~0~e+A~~0s28+.._) 

and the potential has the form 

V(C e) = kG c,, (r - i8)e c0sme . 

Here we use r, which depends on 13, in contrast to the potential (9) with constant ro. In such a case we are to use 
some new auxiliary operators because the eigenfunctions of the operators (6) and (7) are not suitable for the basis 
construction_ Instead of (6) we take 

Hz- o S:Ro[L2+J2-(2L;+L+J_fL_J+)] +“(’ 
2p2tf 

L2+L2 
1 

2 
2p2rf3 

f v,(e), WJ) 
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So eqs. (23)(25) give the total operator representation in elliptical variables. 
We divide now the total hamiltonian to form the auxiliary operators HA and Hi. Such a separation is obvious 

for the potential energy but not trivial for the kinetic energy. The standard method for obtaining the HP operator 
is to put A equal X, in the total hamiltonian and extract all terms which do not contain derivatives with respect to h. 

To do this we introduce 

$0 = [@.g - l)(l - ~2)~(~ - ~~)~l~(-~~~~a~)(~~ - /f2)-“2 , 

Then we can write Hfi as 

If we want now to construct Hh it can easily be seen that the terms cont~~ng @‘aA include a factor depen~g on 
ct. We cannot put ,u =po because our model corresponds to an almost free motion over ,u al fixed X. Such a situa- 
tion arises due to the complicated form of the kinetic energy operator in elliptical coordinates. It is.preferable to 
use the Hx operator which depends parametrically on I_I, i.e. to use the adiabatic type factorization (see, for exam- 
ple ref. 1171). Tbus 

1 4(x2 - 1) a2 _- -+ Jy;c(v, 
2112 R;(X2 -fi2) ah2 

and we must solve a ~~qua~on of the type 

where EN(g) is the eigenvalue of the X&, operator. The last method may easiIy be used only in the case when zero- 
order functions (i.e. products of the eigenfimctions of Hh and HP) are a good approximation to the total problem. 
To ~p~fy the hedonic Hh we can put all h in the kinetic enerw expression equal to Au. 

3. Conclusion 

We have constructed and simplified hamiltonians for triatomic nonrigid molecules with a diatomic rigid core. 
This extensive study was performed because we hope to treat the general problem of the ~bration-rotation spec; 
tra for nonrigid inorganic molecules in the gas phase. Unfo~~ateIy the ~pe~ent~ ~ves~gations of ionic inor- 
ganlc molecules in the gas phase are not mnnerons [18]. We hope that the purely theoretical modefs presented here 
will facilitate the understanding of the general qualitative structure of the vibrdtiun-rotation spectra of ionic non- 
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rigid molecules and will give possibilities for the interpretation of future data and for the theoretical prediction 
of thermodynamic properties of similar molecules at high temperatures. The triatomics are the most simple mole- 
cules for manipulating with the total hamiltonian and searching the most simple models. The equations obtained 
may be rather easily generalized to more complex molecules. We have not repeated here the numerical calculations 
because some of them for the LiCN type molecule have already been published [4]. The following important step 
is to take into account the possible symmetry of the rigid core. This is important for a large number of inorganic 
nonrigid salts with symmetrical rigid core. (LiBH4 is an appropriate example.) 
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Appendix A 

We develop here the hamiltonian in the body fmed coordinate frame, connected with the vector E Such a choice 
of the moving frame is more suited in the case of van der Waals molecules because the vibration-rotation interac- 
tion may be taken into account by perturbation theory in this case. The hamiltonian (3) has now the form 

where J is the total angular momentum, L,- is the angular momentum associated with the vector R. Averaging this 
operator over R we obtain the following analog of the hamiltonian (5) 

- [52fL~-(2LZ2+L+J_+L_J~]+V(r,8). (A- 1) 

To elaborate the model adapted to the elliptical potential it is desirable to transform the operator in the same way 
as in (8) But we cannot apply the same change of variables due to the use of spherical variables. 

Let the nonrigid trajectory be described by the relation 

r(O)=r&l +A1 cos 0 +A2cos26 f . ..) , 

where Al, A2, ___ are constants. Then the transformation 

r’=r[l+Alcosf3tA2cos2~+...]-1, ,9’=e; 

(r’, 13’ are the new variables) results in a new nonrigid trajectory which is a circle. The transformation of the hamil- 
tonian (A.l) to new variables is straightforward but does not yield such compact form for the hamiltonian as ex- 
pression (16). 

Appendix B 

For the case of non-coincidence of the center of the elliptical potential surface and the center of mass of the 
rigid core we use the generalized internal hamiltonian (see eq..(5) of ref. [4]) 
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- (~/3.&,) [P+ L_ + P-L, -I- L-P+ f L,P_ - 2(P+J_ + P_J+)l + V(r, e), (B-1) 

where 

P* = *iP, - Py = *a/ax f i a/au, K = (& - m&n, + mb) - (Pb -&J/Co, + Pb); 

pa, &, are some parameters. The Yvector is defmed now by the relation 

Y= -c - &-a i- &&)/@a -I- &,) - 

The case K = o corresponds to thehamiltoman(4).To transform the hamiltonian (B-1) into new variables (8) we 
make use of formulae(lO), (14), (15) and the relation 

p* -(rg/W* * 

Denoting by HE the hamiltonian (16) we obtain the following generalized operator for the case K f 0 

(P+L_ +p_L* + L-P+ * JV_) 

+ 
(Q~ - b2)q-, 

ab2 
(P,E_+~E,~E_P,+E,~~-~(P,~-+~-J,) - 1 

Appendix C 

Some matrix elements of the type (n’l’m’lAlnlm> are listed below. Here n is the quantum number for the oscil- 
lator over the variable (r - r,,), i is the quantum number associated with the spherical harmonics Ylm, A is some 
operator contributing to the hamiltonian (16). 

First of all we transform the operators E* and a/& 

E* =+rsin6exp(?i@) 
( 
cost9 i-y& , 

a a Shea -- g=coseg * a-+, 

to remove the weight factor r2. It is needed to make the transformation 

ajar -+ (ajar - i/r) _ 

Then we have sin 0 as the weight factor and the expressions (CA) and (C.2) take the form 

E,=+rsinBexp(S$)[cos*($-f)-y$]; (C-3) 

(C-1) 

(C-2) 

a/a2 = cos 6 alar - r-l(cos e + S~II 6 ajae) . 

Now we can calculate the matrix elements: 

(n’l’m’1a2/az21nim) 

(C-4) 

= (n’id2/~21,)(l’m’lcos26 I/m) - <n’[r-2In)(sine(a/a~)l’rn’lsine(a/a~)zrn) (W 

+<(alar-r-1)~‘l~-1~)(coseZ’m’~sine(a/ae)Zm)+~~-l~‘~(a~a~-~-l)~)(sine(a/ae)r’~‘lc0seZm).~ 
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This expression is suitable for the calculation due to simple recurrence relations for cos 6 Yl, and sin O(a/M) 
Ylrn 1161. For diagonal matrix elements we have 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-:(sin%L2+L%in%I)+L,2 +:<1 -3cos2e)]zm). 

Some other matrix elements may be calculated as well: 

bd’m’lL,E_ +L_E++E+L_ +E_L+lnZm) 

(C-6) 

= Um’l(l -33~0~~8) -2(sin2BL2 + L2sin2t3) + 4LzIlm) .._ , 

bzl’m’IE+E_ + E_E+lnlm) = Urm’[sin40L2 + L2sin2t?Lz - 12sin20cos213 

+sin48+3si&IZm)+ 2<r(a/av)nI~(a/a~)~)cr’m’[sin2ec0s201~m). 

To evaluate matrix elements of the operator E+J_ f E-J+ we defiie the operators EL 

EC =hlE,In). 

Taking into consideration eq. (3.3) and the properties of harmonic oscillator functions we obtain 

_C_ = rsin e eki@(zcos e + sin e ajae), (_Q+ = ET , 

~nl’m’lE+J_+E_J,InIm~=~l’m’I~~J_+~_J,llm>. 

cc. 7) 

(C-8) 

(C.9) 

(C-10) 

(C.11) 
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