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Topological phase transitions in the vibration-rotation
dynamics of an isolated molecule
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Abstract One of the characteristic features of rotation-vibration dynamics
is the existence of a variety of energy bands which result from organization
of energy levels into bands depending on control parameters. Symmetry and
topology aspects of the organization of energy bands and generic modifications
of this structure for molecular systems with symmetry are discussed in a way
parallel to the description of topological quantum transitions extensively stud-
ied in condensed matter physics. A special class of axially symmetric molecular
systems is analyzed. It is shown that only a finite number of different band
structures are possible for rotation-vibrational problem with a finite number
of vibrational states in the case of continuous axial symmetry, whereas for
problems with finite group symmetry an arbitrary large number of different
band structures are formally allowed.
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1 Introduction

It is well-known that macroscopic systems can exist in different phases depend-
ing on such control parameters as temperature, pressure, external fields, ... .
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Phase transitions between different states of matter are tightly related with
symmetry. Landau theory of second-order phase transitions is, probably, the
best known example of symmetry breaking associated with qualitative mod-
ification of properties of macroscopic thermodynamic systems. Recently, new
interesting states of matter associated with qualitatively different properties
were discovered like quantum Hall effect [21,24], or topological insulators [19].
The specificity of these new phases is due to modification of some topological
characteristics of matter accompanying the phase transition. The associated
phase transitions were named topological phase transitions [20,14,6].

For finite particle quantum systems the problem of qualitative characteriza-
tion of dynamical behavior can be considered as an analog to classification of
different phases of matter and phase transitions between them [32]. Quan-
tum bifurcations which are largely discussed in vibrational and rotational
structure of rather small isolated molecules are close in spirit to second or-
der thermodynamic phase transitions, especially from the point of view of the
symmetry breaking aspect [33]. Different possible symmetry breaking phenom-
ena are completely classified, for example, for rotational problems for isolated
molecules depending on one control parameter [25] and this classification is
parallel to the symmetry classification of second order thermodynamic phase
transitions for crystals.

Quantum monodromy for a simple isolated molecular system [7,31] was
shown to be an important qualitative feature which is clearly manifested in
the patterns formed by joint spectra of several mutually commuting (or even
almost commuting) variables [8,27,28]. While its classical counterpart, the
Hamiltonian monodromy, is strictly defined for integrable approximations, the
Hamiltonian monodromy is shown to persist owing to its topological origin
even in slightly non-integrable cases [4]. The proof of this fact is similar to
the application of the KAM theory showing that regular tori for completely
integrable systems still persist under small non-integrable deformation.

The present paper deals with such qualitative characteristics of rovibra-
tional molecular problems as band structure and its modifications [26,9,10,
15]. Sect. 2 gives a brief review of the construction of semi-quantum mod-
els using the rotation-vibration problem and of the associated notion of en-
ergy bands using as example the rotation-vibration structure of a tetrahedral
molecule CF4 which is well known from experimental studies and brute force
calculations. The two slightly different basic questions are posed:

i) What system of isolated bands can be formed under presence of some
symmetry requirements?

ii) What kind of rearrangement of band structure is allowed under the
variation of control parameters in the presence of symmetry?

In order to characterize isolated bands by a topological invariant, the Chern
number of the associated fiber bundle, namely the eigenline bundle of the effec-
tive matrix Hamiltonians, is used [9,10,15]. Possible values of Chern numbers
depend on the symmetry of the problem [34,16].

Rearrangement of the band structure under the variation of control pa-
rameters of effective Hamiltonians is well discussed by constructing iso-Chern
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domains [17,18], separated by walls, and by studying the wall-crossing phe-
nomenon [22] through local approximation of a Hamiltonian in question along
with the orbit structure of the symmetry group action on dynamical variables
[23]. The local approximation for “delta-Chern“ invariant is close in spirit to
the simplest model used by Berry to demonstrate the existence of adiabatic
quantum phase [2,11] but the interpretation of so obtained topological in-
variant is different and is based on the initial conjecture [26] on a relation
between the phenomenon of rearrangement of energy bands in molecules and
the modification of such a topological invariant as the Chern number.

The case of axial symmetry is studied in Sect. 3 and compared with pre-
viously studied cases of a finite symmetry group.

Possible physical and mathematical generalizations of the discussed ap-
proach are outlined in Sect. 4.

2 Full quantum and semi-quantum models. Basic notions

In order to explain “semi-quantum“ model we start with a phenomenological
formal construction of an effective Hamiltonian using two subsets of dynamical
variables: “rapid“ variables q and “slow“ variables Q. “Rapid“ variables are as-
sociated with inter-molecular dynamics characterized by relatively high energy
excitations. “Slow“ variables describe a molecular subsystem with low energy
excitations and with high density of the corresponding energy spectrum. Al-
though it is a common practice to explain in similar terms the separation of
electronic and nuclear variables in molecular problems, we mainly apply below
this construction to rotational and vibrational variables. Taking into account
the fact that vibrational excitations are typically much higher than the rota-
tional excitations we can restrict ourselves to the model including only a finite
(and in fact rather small) number of vibrational quantum states. At the same
time in spite of the fact that the number of rotational states associated with
each vibrational state is finite for any chosen value of the integral of motion,
the square of the rotational angular momentum, J2, the density of rotational
states within multiplet is rather high and this allows us to use classical de-
scription of the rotational subsystem in place of a quantum one. As a result
the semi-quantum model of a certain part of the rotation-vibration system of
states consists in treating a classical rotational problem combined with a cho-
sen finite set of quantum vibrational states. It corresponds to a classical limit
over rotational variables for effective quantum rotation-vibration Hamiltonian
for a finite set of vibrational states. We illustrate here the correspondence
between a quantum effective Hamiltonian and a semi-quantum model on a
concrete molecular example exhibiting band structure and its reorganization
associated with redistribution of energy levels between different bands.

One such representative molecular example [3] is shown in figure 1. This
figure shows only a part of the rotational structure of closely lying ν3 and 2ν4

bands of the tetrahedral CF4 molecule. Three branches of ν3 vibrational state
(split by Coriolis interaction) at low J-values are situated at lower energies
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than six components of 2ν4 state. The internal structure of each band is formed
by rotational 6-fold, 8-fold, and 12-fold quasi-degenerate clusters and is not
relevant to the present discussion of band rearrangements [13,32]. In contrast,
the number of energy levels in the band is a very important characteristics. The
lower band shown in figure 1 at J = 29 (the left side of figure 1) consists of 2J+
3 energy levels and corresponds to the effective rotational quantum number
R = J + 1. The upper band represented in figure 1 at J = 29 consists of 2J +
5 energy levels and corresponds to the effective rotational quantum number
R = J + 2. At J = 38 (the right side of figure 1) the lower branch (among
two branches represented in this figure) consists of 2J + 5 energy levels and
corresponds to the effective rotational quantum number R = J+2, whereas the
higher in energy branch at J = 38 region consists of 2J + 3 energy levels and
corresponds to effective rotational quantum number R = J+1. The qualitative
effect of the rearrangement of the band structure under the variation of one
control parameter, J , is well known in molecular spectroscopy and can be
qualified as a generic phenomenon. In order to demonstrate the similarity of
this phenomenon with the topological phase transitions in condensed matter
we need to pass from the effective quantum description to a semi-quantum
model of this phenomenon.

Let us discuss the correspondence between full quantum and semi-quantum
descriptions on the example of ν3 and 2ν4 bands of the CF4 molecule. The
rotational structure of the upper component of the ν3 triply degenerate band
and of the lower branch of the 2ν4 system of bands of the CF4 molecule clearly
shows the redistribution of energy levels under the increase of J value from
J = 29 till J = 38 (the region shown in figure 1). One sequence of 8-fold
quasi degenerate rotational clusters goes from the upper branch to the lower
one under the J increase. Simultaneously, along almost the same J values
one sequence of 6-fold degenerate clusters goes from the lower branch to the
upper one. As a result of this redistribution of energy levels the lower in energy
branch at J = 38 consists of 2J + 5 energy levels and can be attributed to
R = J + 2, whereas the upper in energy branch has 2J + 3 energy levels and
can be labeled by R = J + 1.

A complete effective quantum Hamiltonian describing all three branches of
ν3 and six branches of 2ν4 (both ν3 and ν4 are triply degenerate) system of
rovibrational energy levels can be written as a linear combination of operators
constructed in terms of vibrational and rotational irreducible tensor operators
respecting the symmetry of the problem. Alternatively, it can be put in the
form of a 9 × 9 matrix Hamiltonian associated with nine vibrational states
(three components of ν3 state and six components of 2ν4 state), whose matrix
elements are functions of rotational operators. For one chosen value of J , the
rotational operators are represented as (2J + 1) × (2J + 1) matrices, so that
the effective Hamiltonian takes the form of a square matrix of order 9(2J +1).
If we replace the quantum rotational operators by their classical analogs, we
obtain a “semi-quantum“ model Hamiltonian which is a 9 × 9 matrix with
its matrix elements being functions defined on the classical phase space for
rotational variables. As soon as we can fix the J2, the classical phase space for
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Fig. 1 Upper branch of ν3 and lower branch of 2ν4 bands of CF4 molecule with Td point
symmetry group of the equilibrium configuration. 6i, 8j , 12k are labels for six-fold, eight-
fold, and twelve-fold rotational clusters characterized by the projection α = J−M , α = i, j, k
on C4, C3, and C2 axes respectively.

rotational variables is nothing else but the two-dimensional sphere defined in
Jx, Jy, Jz variables as J2

x + J2
y + J2

z = J2.
We now have a matrix Hamiltonian defined over two-dimensional sphere

and depending on extra parameters. There are phenomenological parameters
of the effective Hamiltonian which can be, for example, fitted to reproduce
experimental data and kept fixed for a chosen molecular system. Of special
importance is a physically meaningful parameter such as J2, the square root
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J of which can be used as a parameter for the description of evolution of the
rovibrational structure under rotational excitation. Such evolution is demon-
strated in figure 1 where the system of energy levels is plotted against rota-
tional quantum number J . This figure clearly shows the presence of energy
bands and their rearrangement under the variation of a control parameter J .
In order to formulate more accurately the concept of energy bands and their
rearrangement, we need to introduce mathematically more precise language.

The system of eigenspaces of our matrix Hamiltonian forms a vector bun-
dle of rank 9 with a base space being a classical phase space for rotational
variables, i.e. a two-dimensional sphere S2. This means that nine complex
eigenspaces are associated with each point of the base space. In order for
these eigenspaces to be defined unambiguously it is necessary that correspond-
ing eigenvalues are non-degenerate. Let us suppose that eigenvalues are non-
degenerate everywhere on the sphere. In such a case, the vector bundle can be
considered as a direct sum of isolated individual eigenline bundles associated
with respective eigenvalues. It is known that globally each complex eigenline
bundle can be characterized by a topological invariant, the Chern number,
which is an integer number, positive, negative or zero. The trivial line bundle
has its Chern number equal to zero.

It is important to note that the absence of degeneracy points between
eigenvalues of a matrix Hamiltonian defined over the two-dimensional sphere
is a generic situation if the value of the rotational angular momentum J is
fixed. This is because the codimension of degeneracy of two eigenvalues of
an hermitian matrix is three [1,5], and because for a fixed J value the ef-
fective Hamiltonian depends only on two “parameters“, the coordinates of a
point on the two-dimensional sphere (point of a classical phase space for ro-
tational variables). Consequently, at fixed J values degeneracies are absent
in general and then associated eigen-line bundles are defined, each of which
is characterized by a topological invariant, its Chern number. To each eigen-
line bundle so constructed for a semi-quantum model, there corresponds one
energy band, i.e. the energy surface En(θ, φ) defined on the classical phase
space, S2 (here θ, φ are two spherical angles used as variables characterizing
the position of a point of S2 classical phase space). Note that so defined energy
bands En(θ, φ) and Em(θ, φ), n 6= m can overlap in energy even in the absence
of degeneracy points. The degeneracy means that there exists a point (θ0, φ0)
on the sphere such that En(θ0, φ0) = Em(θ0, φ0), whereas overlapping means
that there exist at least two distinct points (θ1, φ1) and (θ2, φ2) such that
En(θ1, φ1) = Em(θ2, φ2). It is clear that specific quantum effects can appear
when within the semi-quantum model the energy bands are isolated but over-
lapping. We are interested here in more serious effects manifesting themselves
in the full quantum model in association with formation of degeneracy points
of energy bands.

If we take the J as a control parameter (serving as a scaling factor for
the semi-quantum Hamiltonian) and study one-parameter family of effective
Hamiltonians depending on J , isolated degeneracies could appear for some
values of J at some points on the sphere on account of the codimensionality of
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degeneracy. (Remind that the codimension of degeneracy point is three.) For
such J-values eigen-line bundles are not defined over S2, since the eigenspace
associated with the degenerate eigenvalue does not naturally split into a direct
sum of one-dimensional linear spaces at the degeneracy point of S2. This means
that the control parameter space (in our example this is the J line) is divided
into connected regions by singular values of J , the values of J corresponding
to formation of degeneracy points on S2. Each connected region filled by reg-
ular values of control parameter (i.e. values for which there are no degeneracy
points of eigenvalues) is named an “iso-Chern“ domain because if we vary the
control parameter value within this regular region, the topological invariant of
the eigenline bundle cannot change. In general, values of control parameters
corresponding to formation of degeneracy points on S2 form “walls“ between
iso-Chern domains in the space of control parameters. In order to describe
qualitative modification of eigen-line bundles and hence quantitative modifi-
cation of Chern numbers, we have to study what happens when the control
parameters vary along a path crossing a wall separating different iso-Chern
domains in the space of control parameters. Apparently, the serious modifica-
tions occur only in a local three-dimensional neighborhood of the degeneracy
point characterized by specific values of (θ0, φ0, λ0), two coordinates of degen-
eracy point on the classical phase space and one value of the control parameter
measured along the path crossing the wall between iso-Chern domains. In ad-
dition, we need to remember that in the presence of a finite symmetry group
acting on the classical phase space S2, if there is a degeneracy point on S2

every point of the orbit by the symmetry group is a degeneracy point as well.
Thus it is necessary to take into account the stratification of the phase space
by the action of symmetry group. The stratification of the rotational phase
space by the symmetry group for spherical top molecules with tetrahedral or
cubic symmetry is well known. Owing to invariance of rotational variables
with respect to space inversion, the action of Td point symmetry group on the
rotational sphere is equivalent to the action of the octahedral point group O
on the space sphere. There are three isolated orbits formed respectively by
points with C4, C3, and C2 local symmetry and generic orbits with trivial C1

symmetry. The C4 orbit consists of 6 equivalent points on the sphere, the C3

orbit consists of 8 points and the C2 orbit consists of 12 points. The number
of points in a generic C1 orbit is equal to the group order, 24. This means
that the effect of formation of degeneracy points belonging to some orbit of
the group action can be written as an effect of one local degeneracy point
multiplied by the number of points forming the orbit of the symmetry group
action.

The effect of crossing the wall between different iso-Chern domains in the
control parameter space can be represented in the form of “delta-Chern“ con-
tribution from each isolated degeneracy point. It was shown, that the crossing
of the wall along a path gives rise to a Chern number modification by ±1 from
each generic degeneracy point [17]. In full quantum picture this phenomenon
manifests itself through the redistribution of one quantum level between two
bands forming degeneracy point in the semi-quantum model [9]. Taking into



8 T. Iwai, B. Zhilinskii

c

c   −2

c   +21

1 1

1

U U

L

c   +6
U

c   −6

1

1
LL

6 8

c

c

c c   −2

c   +21

1 1

1

U U

L

c   −8
U

c   +8

1

1
LL

8 6

Fig. 2 Possible scenario for modification of topological invariants of isolated bands within
semi-quantum model for rotation-vibration bands of CF4 molecule shown in figure 1.

account the symmetry group G of the problem and the local symmetry (or
stabilizer), G0 ⊂ G, of the degeneracy point, we can express the global “delta-
Chern“ contribution ∆c1 as

∆c1 =
|G|
|G0|

δ. (1)

Here |G| and |G0| are orders of groups G and G0; δ is the local delta-Chern
contribution from one isolated degeneracy point with stabilizer G0. The ab-
solute value of δ depends on the order of the degeneracy point. In generic
situation the degeneracy point between two energy surfaces is nothing else
but a conical intersection point and it is associated with δ = ±1. To be pre-
cise in the sign of this local delta-Chern contribution is a much more subtle
problem [17,18]. At the same time from the pattern of energy levels it is often
easy to interpret a very characteristic behavior of energy levels as a function of
“control parameter“, J , in terms of topological invariant, the Chern number.
Let us discuss the pattern formed by rotation-vibration energy levels of the
CF4 molecule represented in figure 1 in these terms. The sequence of six-fold
rotational clusters going from the lower energy band to the upper one should
be associated (within the semi-quantum model) with formation of degener-
acy points with C4 local symmetry at J ∼ 32. At approximately the same J
value another degeneracy point with C3 local symmetry (in fact eight equiv-
alent points forming orbit with C3 local symmetry group) should be formed.
Appearance of this point in the semi-quantum model is associated with the
redistribution of the eight-fold cluster between two bands within a fully quan-
tum description. Degeneracy point appears in the semi-quantum model for an
isolated J-value. Appearance of degeneracy points with C4 and with C3 local
symmetries is independent and naturally the corresponding J-values are not
obliged to be integers. Two schematic scenarios can be suggested depending on
relative order of J-values associated with formation of C4 and C3 degeneracy
points. Figure 2 represents these two scenario. Two energy bands clearly seen
in quantum energy level pattern at J = 29 are labeled according to the idea of
the semi-quantum model by respective Chern numbers cU

1 for the upper band
and by cL

1 for the lower band. Modification of the topology of individual bands
in the semi-quantum model is reflected by the modification of the number of
quantum levels within each band as compared to standard 2J + 1 values for
pure rotational multiplet.
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The modification of the topological Chern invariant by one within the semi-
quantum model is associated with the modification of the number of quantum
energy levels by one in an isolated energy band for a full quantum picture
[9]. This means that we can convert the topological invariant c1 into more
standard spectroscopic characteristics, effective rotational quantum number
R by relating R, J , and c1 through

R = J + c1/2. (2)

It is quite natural that topologically trivial bands associated in the semi-
quantum model with c1 = 0 Chern number correspond in a full quantum
picture to isolated energy bands consisting of 2J + 1 rotational energy lev-
els. Nevertheless, in case of degenerate vibrational states it is not possible to
split the whole rotational structure into several isolated bands consisting each
of 2J + 1 energy levels. This effect can be easily seen by studying the de-
composition of the whole set of rovibrational states into individual rotational
multiplets.

The whole set of rotation-vibrational levels for vibrational state belonging
to degenerate representation Γn of dimension n of the symmetry group G
can be classified by irreducible representations of the symmetry group G by
reducing the (J) representation of the rotational SO(3) group to rotational
subgroup G and by multiplying the so obtained reducible representation by
Γn and decomposing the resultant representation into irreps of G,

Γn × (J) = Γn ×
∑

i

miΓi =
∑

j

djΓj =
n∑
k

γk ×
(
J + c

(k)
1 /2

)
, (3)

where γk is one of one-dimensional representations of G. 1 In order to check if
the decomposition of the whole set of so obtained representations into several
isolated rotational multiplets is possible for a finite group G, it is necessary to
verify if this set can be split into the sum

∑
k(J+∆k)×γk, where each (J+∆k)

representation of the SO(3) group is considered as a reducible representation
of the symmetry group G. Expression (3) should be checked for finite groups
G for all (J). But in fact, it is sufficient to check it out only for a finite number
of J-values because of a cyclic structure of the decomposition of irreducible
representations (J) of SO(3) group into irreps of its finite subgroup. The
minimal number Jmin of representations (J) to be checked can be estimated
from relation Jmin = |G|/2, where |G| is the order of group G, or more precisely,
the order of the image of the group G in the studied representation.

Expression (3) gives therefore an interesting possibility to impose restric-
tions on possible values of Chern numbers of individual bands in the pres-
ence of invariance of the rotation-vibration problem under a finite symmetry
group. To formulate these restrictions more accurately let us consider first the

1 The number of one-dimensional representations of a group is equal to the order of
Abelianization, i.e. the order of the Abelian group G/[G, G], the quotient of G by the
commutator [G, G].
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rotation-vibration problem for the tetrahedral molecule in a doubly degenerate
E-vibrational state. Expression (3) reads in this case

E × (J) = (J + ∆)g + (J −∆)u; ∆ = ±2 mod 6. (4)

Here (J+∆)α, α = g, u means that the vibrational symmetry for isolated band
is of type A1 or A2, abbreviated for simplicity as g or u, because there are only
two different one-dimensional irreducible representations. Taking into account
(2) we can rewrite condition (3) in terms of equivalent restriction on topological
invariants, Chern numbers, for isolated line bundles into which the rotational
structure of a doubly degenerate vibrational E state can be split. Namely we
have cE

1 = ±4 mod 12. Note that the realization of the decomposition with
a given ∆ or c1 for a fully quantum problem is possible only if J ≥ ∆. The
suggestion to avoid this inconvenience in quantum classical correspondence
is formulated in the next section by introducing the “ghost“ band. The semi-
quantum model has no such restriction and we can say that formally an infinite
number of possibilities exists for a decomposition of rotational structure for
E vibrational state. Naturally the sum of ∆ or c1 over two isolated bands
obtained after splitting of the rotational structure of E state equals zero.
Thus only one number is sufficient to characterize topological invariants for
two bands.

The case of triply degenerate vibrational state is more complicated. Now
to describe all possible decompositions of the rotational structure of a triply
degenerate vibrational state we need two parameters because the sum of ∆ or
c1 over all three components is zero. It is suitable to write equation (3) in this
case as [34,23,18]

F × (J) = (J + ∆max) + (J + ∆mid) + (J + ∆min); (5)
∆max + ∆mid + ∆min = 0.

Eq. (5) is written in a simplified form because it does not take into account
the difference between two three-dimensional representations F1 and F2 and
one-dimensional representations Ai. But the possible values of ∆i, shown in
figure 3 are identical for F1 and F2.

It is also interesting to see the regularity in the possible values of ∆. In
fact the whole pattern of possible ∆ values can be reconstructed from an
“elementary cell“ represented in figure 3 by hatching.

We can now summarize our discussion of the CF4 molecule from the point
of view of correspondence between the rotational structure of several vibra-
tional states in terms of effective fully quantum Hamiltonian and that in terms
of semi-quantum model. The notion of an energy band which is empirically
used for the quantum problem finds its justification within the semi-quantum
construction which allows us to associate with each isolated energy band a
topological invariant and to split the space of control parameters into iso-
Chern domains and walls between them. Going from the quantum Hamilto-
nian to a semi-quantum model and studying the wall-crossing enables one to
characterize for the quantum problem the transformation from one qualitative
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Fig. 3 Possible decompositions of rotational structure for triply degenerate vibrational F
state into three isolated bands.

type of internal dynamics to another one and to relate this transformation to
a precise topological invariant “delta-Chern“. Possible values of delta-Chern
are strongly related with the symmetry group of the problem, in particular
with the stratification of the classical phase space for rotational motion by
the symmetry group action. Different possible decompositions of the rotation-
vibration energy level system into an elementary band system are described
in terms of possible decompositions of trivial vector bundles into a sum of
eigenline bundles with specific Chern numbers whose choice is restricted by
symmetry.

Qualitative modifications of the band structure in isolated molecules are
therefore similar to topological phase transitions intensively studied in solid
state physics. The analysis made in this section uses essentially the fact that
the symmetry group of the problem is finite. An important consequence of
this assumption is a formally infinite number of possible nonequivalent reor-
ganizations of band structure and infinite choices of possible different band
structures compatible with a given initial finite set of vibrational states for
sufficiently high J-values.

3 Band structure in the presence of axial symmetry

We now return to the analysis of the semi-quantum model describing rotation
vibration structure in the presence of axial symmetry. To simplify the analysis
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we will consider the SO(2) rotational group as an invariance group of the
problem. An effective rotation-vibration Hamiltonian under study describes
rotational structure of K vibrational states whose symmetry with respect to
the SO(2) group is given by a reducible representation written in the form
m1 ⊕m2 ⊕ . . .⊕mK . Here we are reminded of the fact that the SO(2) group
is Abelian and all its irreducible representations are one-dimensional. For a
chosen value of the rotational angular momentum, J , there are 2J+1 rotational
functions which span the irreducible representation (J) of the SO(3) group.
The decomposition of the representation (J) of SO(3) group into irreps of
SO(2) subgroup, which is supposed to be the symmetry group of the problem
is given by the well known relation

(J) =
J∑

m=−J

m. (6)

This means that the complete set of rotation-vibration states of the effec-
tive Hamiltonian under study spans the reducible representation of the SO(2)
group (

K∑
i=1

mi

)
⊗ (J) =

K∑
i=1

J+mi∑
m=−J+mi

m. (7)

This reducible representation is fixed by the formulation of the effective prob-
lem and relevant for the full quantum effective problem and for the semi-
quantum model. The questions which we want to answer now are:

i) What system of bands is possible for this problem?
ii) What kind of elementary rearrangements of bands are allowed under

variation of a control parameter? (We can take as a control parameter the
absolute value of J .)

iii) How to describe the rearrangement of band structure by the topological
invariant, the Chern number?

We start by looking at simplest interesting case of effective Hamiltonian,
namely the Hamiltonian for two vibrational states.

To specify the problem we need to define symmetry types of vibrational
states and construct the complete set of rotation-vibration functions for a
given value of the integral of motion, J . For two vibrational states of m1 and
m2 symmetry and for a given J value for rotation, the 2(2J + 1) rotation-
vibration basis functions schematically shown in figure 4, left sub-figure, can
be grouped into two sets each consisting of 2J + 1 states or into two subsets
consisting of different number of basis functions. In order to interpret each
subset as a rotational multiplet with some effective rotational number R, it is
necessary that each multiplet is formed by a consecutive m values and the same
decomposition should be valid for any sufficiently high J values. Taking J ≥
|m2−m1|/2 we obtain the representation of the basis set shown in figure 4 with
m1 ≤ m2 and J +m1 ≥ −J +m2. In Figure 4, each of the bullets represents a
basis function. The total number of the basis functions is kept before and after
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Fig. 4 Two possible band systems which are allowed for rotational structure of two vibra-
tional states in the presence of SO(2) symmetry for a fixed J-value. R is effective rotational
quantum number for an isolated band. Left: General case of two vibrational states trans-
forming according m1 and m2 representations of SO(2). Right: Concrete realization for
m1 = −1, m2 = +1 and J = 3. mz indicates the symmetry of rotation-vibration state.
“Ch“ means Chern number for an isolated band. ∆ = (m2 −m1)/2. Cross shows the center
of each individual band. Note that the whole set of upper ends of bands remains invariant
under band rearrangement as well as the collection of lower ends of bands.

the rearrangement, but we have to note that the basis functions themselves
are not literally identical before and after the rearrangement.

To relate the decomposition of the basis of rotation-vibration functions
with a bundle structure associated with the semi-quantum model, we note
that the decomposition into two groups with the same number of functions,
one of which has SO(2) labels varying from −J +m1 to J +m1 and the other
from −J + m2 to J + m2 corresponds to the construction of two trivial vector
bundles over the sphere with zero Chern number for each. If the decomposition
is changed, the only one alternative decomposition into two bands is possible.
One band covers the space consisting of basis functions with SO(2) labels
varying from −J+m1 till J+m2 whereas another band covers the space formed
by functions with SO(2) labels varying from −J + m2 till J + m1. Obviously
such a decomposition is possible if J ≥ |m2 −m1|/2. This is quite natural for
a semi-quantum model, since the J-values have been necessarily assumed to
be high when going to a classical limit over rotational variables for forming
the semi-quantum model. The Chern numbers for these two bands become
equal to ±(m2 − m1). It is important to note that these two bands can be
considered as effective rotational multiplets associated with vibrational states
transforming according to an irreducible representation m = (m1 + m2)/2 of
the symmetry group SO(2).

Nevertheless, formally the description of the reorganization of energy bands
can be given even in the case of J < |m2 −m1|/2. To illustrate such a possi-
bility let us look at an example of two rotational multiplets with vibrational
symmetry m1 = −5 and m2 = +5. Normally, for J ≥ 5 we have two possibili-
ties to form two bands.
i) We can have two bands with the same number of states, 2J + 1, with vi-
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Fig. 5 The interpretation of two possible band systems which are allowed for rotational
structure of two vibrational states in the presence of SO(2) symmetry for a fixed J-value in
case of J < |m2−m1|/2. Left: General case of two vibrational states transforming according
m1 and m2 representations of SO(2). “Ghost band“ and the annihilated part of the only
observed band are shown by dash line. Right: Concrete realization for m1 = −5, m2 = +5
and J = 3. States which belong to ghost band and to annihilated part of the observed band
are shown by empty dots. mz indicates the symmetry of rotation-vibration state. “Ch“
means Chern number for an isolated band. ∆ = (m2 − m1)/2. Cross shows the center of
each individual band.

brational symmetries m1 = −5, m2 = +5, and with the trivial Chern number
zero.
ii) We can form two bands composed by different number of quantum states
and corresponding to different effective rotational quantum number, R = J−5
and R = J + 5, and the vibrational symmetry m = 0. In the classical limit
these two bands have Chern numbers ±(m1 −m2) = ±10.

For J < |m1 − m2|/2, i.e. in the considered case for J < 5, two isolated
bands with the same number of quantum states in each band exist but between
these two bands there exist an interval of m values which are not associated
with quantum states. Figure 5 illustrates the situation for the general case
of J < |m1 − m2|/2 and for the concrete case of J = 3 and m1 = −5,
m2 = +5. To keep formally the possibility to reorganize the bands we introduce
“ghost“ states which fill the interval between two bands and interpret the
resulting system as formed by two virtual bands: one with energy states with
−J+m1 ≤ m ≤ J+m2 and another with “ghost“ states with J+m1+1 ≤ m ≤
−J+m2−1. Figure 5, right illustrates the general situation for J = 3 and mi =
±5. The two bands after rearrangement correspond to R = J ± (m2 −m1)/2,
i.e. for R = 8 and R = −2. The band with R = −2 is interpreted as a “ghost
band“, which does not appear as a system of really observable states but as a
formal band which annihilates the same number of quantum states from the
other band and the overall system of energy levels consists of really observable
states. The band with R = 8 has only 14 observable states instead of the
formal number 2R + 1 = 17, because three states, namely those associated
with m = 0,±1 are annihilated by the “ghost band“.

The suggested interpretation allows us to use the classical limit for the
description of the rearrangement of bands for any J value. Physically, this
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means that for low J values it is still possible to have two topologically different
situations. One corresponds to splitting of observable levels into two bands
with trivial Chern number 0 and with the effective rotational quantum number
R = J for both bands. The both bands are observable in this case. Another
situation corresponds to formation of only one observable band with nontrivial
Chern number c and with the effective rotational number Ro = J + c/2.
The second band becomes “ghost“, i.e. unobservable. The “ghost“ band is
characterized by a negative value of Rg = J − c/2 ≤ −1 and, consequently, by
the negative number of quantum states, 2Rg + 1 ≤ −1. This negative number
of states for the “ghost“ band leads to the fact that the number of observable
quantum states for the observable band is different form 2Ro + 1 = 2J + c + 1
and equals 4J + 2. The number 4J + 2 is the total number of observed energy
levels for a given J value within the model of two bands. The difference between
the number of observed states and the formal number of states expressed in
terms of J and Chern number suggests to name this band a “fractional“ band.

Note that the “ghosts“ are used to compensate unphysical degrees of free-
dom [12] and lead, in particular, to the appearance of negative spins [30,29]. In
our interpretation of the band structure at low J values, J < |m1−m2|/2, we
replace actually the classical problem with two degrees of freedom (one degree
of freedom is associated with the projection of angular momentum and another
with two components of vibrational states) by an effective observable problem
with one degree of freedom (projection of effective rotational momentum R).
The “ghost“ band corresponding to a negative Rg value causes the appear-
ance of the difference between the number of “physically observable states“,
i.e. 4J + 2, and formally associated to the only observable band 2Ro + 1. The
ratio between the really observable states in the “fractional“ band with Ro

quantum number and the virtual number of states in the band, 2Ro + 1, i.e.
4J+2
2Ro+1 increases when J varies from 0 till J = |m1−m2|/2. For J = |m1−m2|/2
the “ghost“ band is materialized. Its quantum number Rg becomes equal to 0
and remains positive for higher J values. Simultaneously with materialization
of the “ghost“ band, the fractional band becomes a normal band with the
number of observable states equal to 2J + c+1. In the presence of the “ghost“
band the observable “fractional“ band can be characterized by a fractional
quantum factor 4J+2

2Ro+1 which can be expressed explicitly in terms of J,m1,m2.
Namely, we have for the fractional factor νJ,m1,m2 the following expression

νJ,m1,m2 =
4J + 2

2J + |m1 −m2|+ 1
, J < |m1 −m2|/2, (8)

which is valid only in the presence of a “ghost“ band. For J = |m1−m2|/2, the
ghost band is materialized and becoming normal band with R = 0, i.e. with
one observable quantum state. To extend expression (8) for J ≥ |m1 −m2|/2
we need to subtract from the numerator the number of states belonging to
another band, namely 2J − |m1 −m2|+ 1. This gives for all J ≥ |m1 −m2|/2
the fractional factor 1.
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Fig. 6 Six possible band structures for rotation-vibrational energy levels for three vibra-
tional states transforming according three different irreducible representations m1, m2, m3

of the SO(2) symmetry group.

4 Generalizations

Generalization of our analysis to the case of an arbitrary number of vibrational
states in the presence of a continuous SO(2) symmetry is straightforward. For
N vibrational bands belonging to different mi vibrational representations the
total of N ! different possible band structures are possible because we can form
a band by combining any lower end at −J −mi with an arbitrary upper end
at J + mj . Six alternative band structures for the rotation-vibration energy
level system formed by three vibrational states are represented in figure 6.

Again we should note that the indicated in figure 6 six band structures
correspond to the case of sufficiently high J values. At low J it is possible that
there exist one or two “ghost“ bands and only two or even one band remain
observable. The best way to see possible band structures for low J-values is to
make a continuation in J: Starting with a sufficiently high J value, we lower
the J value, keeping invariant the topological structure, i.e., Chern numbers,
to look for effective rotational quantum numbers expressed in terms of J and
Chern numbers.

To characterize the band structure for rotation-vibration problem for N
vibrational states belonging to m1,m2, . . . ,mN irreducible representations of
the SO(2) symmetry group we need to specify for each band within the semi-
quantum approach the Chern number and the position of the center of band.
As an initial band system we can take bands with zero Chern numbers and
with band centers m1,m2, . . . ,mN . Since the number of bands before and after
rearrangement is supposed to be conserved within the semi-quantum models
under study, different band structures correspond to different permutations
of the ends of bands so that we can classify band structures in exactly the
same way as permutations of N objects, i.e. by the cycle structure of permu-
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Table 1 Band structures for a model with two quantum states with SO(2) symmetry
m1, m2. First line of the table shows the trivial band structure. Second line gives the only
possible alternative case. Chern numbers and center positions for each of two bands are
given for sufficiently high N values.

Cycle Chern number Band center
12 0 0 m1 m2

2 m2 −m1 m1 −m2
m1+m2

2
m1+m2

2

Table 2 Irreducible band structures associated with cyclic structure 3 of permutation group
S3 for a model with three quantum states with SO(2) symmetry m1, m2, m3. First line of the
table shows the trivial band structure. Two irreducible cases follow below. Chern numbers
and center positions for each of three bands are given for two possible irreducible band
structures for sufficiently high N values.

Cycle Chern number Band center
13 0 0 0 m1 m2 m3

3 m2 −m1 m3 −m2 m1 −m3
m1+m2

2
m2+m3

2
m3+m1

2

m3 −m1 m2 −m3 m1 −m2
m1+m3

2
m2+m3

2
m1+m2

2

Table 3 Irreducible band structures associated with cyclic structure 4 of permutation group
S4 for a model with four quantum states with SO(2) symmetry m1, m2, m3, m4. First line of
the table shows the trivial band structure. Six irreducible cases follow below. Chern numbers
and center positions for each of four bands are given for all six possible irreducible band
structures for sufficiently high N values.

Cycle Chern number Band center
14 0 0 0 0 m1 m2 m3 m4

4 m2 −m1 m3 −m2 m4 −m3 m1 −m4
m1+m2

2
m2+m3

2
m3+m4

2
m1+m4

2

m4 −m1 m3 −m4 m2 −m3 m1 −m2
m1+m4

2
m3+m4

2
m2+m3

2
m1+m2

2

m2 −m1 m4 −m2 m3 −m4 m1 −m3
m2+m1

2
m4+m2

2
m3+m4

2
m1+m3

2

m3 −m1 m4 −m3 m2 −m4 m1 −m2
m3+m1

2
m4+m3

2
m2+m4

2
m1+m2

2

m3 −m1 m2 −m3 m4 −m2 m1 −m4
m3+m1

2
m2+m3

2
m4+m2

2
m1+m4

2

m4 −m1 m2 −m4 m3 −m2 m1 −m3
m4+m1

2
m2+m4

2
m3+m2

2
m1+m3

2

tations. For two bands there are only two classes, 12 and 2. Table 1 describes
two possible band structures for two bands. In case of N bands we can name
“irreducible band structures“ all systems of bands associated with cyclic per-
mutations of maximal length, N . There are (N − 1)! such band systems. All
other band structures are associated with rearrangements between subsets of
initially trivial bands. Irreducible band structures for models with three and
four bands are given in tables 2, 3.

Each band structure can be associated with a classifying operator in such
a way that the same eigenvalue of the classifying operators corresponds to all
quantum states belonging to the same band and different eigenvalues corre-
spond to different bands. The simplest example of such a classifying operator
naturally appears in a particular case when all “vibrational states“ form a
reducible representation of the SO(2) group which can be considered as an
irreducible representation (S) of SU(2) or SO(3) group. The coupled basis in
this case is the eigen-basis of SJ = (R2 − J2 − S2)/2 operator. The transfor-
mation between an uncoupled and a coupled basis of two angular momenta S
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zero energy mode

Fig. 7 Rearrangement of bands through formation of zero mode states in the case of suf-
ficiently high J values. For this figure J = 3 and m1 = −2, m2 = 2. Quantum states are
shown by black fill dots.

and J can be considered as a well known example of a transformation between
two different band structures. A classifying operator for one (uncoupled) band
structure is the Sz operator. Each of its eigenvalues is 2J + 1 degenerate and
corresponds to a band with trivial Chern number 0. The classifying operator
for coupled basis is SJ. If J ≥ S there are 2S+1 bands characterized by quan-
tum number R = J + S, J + S − 1, . . . , J − S. From the point of view of the
semi-quantum model these bands are characterized by topological invariants,
Chern numbers, 2S, 2(S − 1), . . . , 2(−S).

A generalization of the present angular momentum coupling is possible to
the case of a weighted action of the symmetry group SO(2) on vibrational and
rotational variables. A weighted action is defined in such a manner that SO(2)
invariant subspaces are given by

W
(`)
J,S = span{|k〉 ⊗ |r〉; k + 2r = `, |k| ≤ J, |r| ≤ S}. (9)

In particular, vibrational states with m1 = −1, m2 = 1 are comparable
with the effective spin S = 1/2. In a similar way, four vibrational states with
symmetry ±1, ±3 are comparable with the effective spin S = 3/2. However,
in this case, the transformation to the coupled basis with respect to a certain
classifying operator describes only one among 4! = 24 possible bases. All these
24 band structures are listed in table 4.

The band system corresponding to angular momentum coupling between
J and effective spin S = 3/2 in presence of weighted symmetry is associated
with the cycle structure 22 of the group of permutation S4 (see line 10 in table
4).

Up to now we have discussed different possible band structures but did
not touch the question of “elementary“, i.e. generic transformations between
different band structures.

The rearrangement of band structure is possible within semi-quantum
model through formation of degeneracy points of different eigenvalues of a ma-
trix Hamiltonian. Generically the formation of degeneracy points is possible
only between two eigenvalues. Consequently, an “elementary rearrangement“
occurs between two neighboring in energy bands.
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Table 4 Band structures for a model with four quantum states with SO(2) symmetry
±1,±3. Chern numbers and center positions for each of four bands are given for all 24
possible band structures.

N Cycles Chern number Band center
1 14 0 0 0 0 −3 −1 1 3
2 2, 13 2 −2 0 0 −2 −2 1 3
3 4 0 −4 0 −1 −1 −1 3
4 6 0 0 −6 0 −1 1 0
5 0 2 −2 0 −3 0 0 3
6 0 4 0 −4 −3 1 1 1
7 0 0 2 −2 −3 −1 2 2
8 22 2 −2 2 −2 −1 −1 1 1
9 4 4 −4 −4 −1 1 −1 1

10 6 2 −2 −6 0 0 0 0
11 3, 1 2 2 −4 0 −2 0 −1 3
12 4 −2 −2 0 −1 −2 0 3
13 4 0 2 −6 −1 −1 2 0
14 6 0 −4 −2 0 −1 −1 2
15 2 4 0 −6 −2 1 1 0
16 6 −2 0 −4 0 −2 1 1
17 0 2 2 −4 −3 0 2 1
18 0 4 −2 −2 −3 1 0 2
19 4 2 2 2 −6 −2 0 2 0
20 2 4 −2 −4 −2 1 2 −1
21 4 −2 +4 −6 −1 0 1 0
22 4 2 −4 −2 −1 2 1 −2
23 6 −2 −2 −2 0 2 0 −2
24 6 −4 2 −4 0 1 0 −1

In order to give a concrete simplest form of the local Hamiltonian associated
with the formation of a degeneracy point and with a point on the path crossing
(in the control parameter space) the wall between iso-Chern domains let us
take an example of two vibrational states belonging to two irreducible repre-
sentations of the SO(2) group ±k and suppose that the rotational momentum
N is sufficiently high. This allows us to treat in parallel the semi-quantum and
the full quantum models.

The whole linear space of quantum states within the full quantum problem
has dimension 2(2N + 1) and can be described in terms of decoupled basis
|MN ,±k〉, |MN | ≤ N or in terms of coupled basis |MJ = MN ± k, MN ,±k〉.

The decoupled basis is suitable to use if we want to classify states according

to eigenvalues of the “vibrational“ operator Vz =
(

k 0
0 −k

)
as a classifying

operator. The operator Vz plays the role of effective “spin operators“ together

with V+ =
(

0 1
0 0

)
and V− =

(
0 0
1 0

)
.

The operator Vz has two eigenvalues ±k. It splits 2(2N + 1) quantum
states into two bands with the same number of states in the band accord-
ing to its eigenvalue. The operators V± are formally defined as operators
transforming vibrational functions V+| − k〉 = |k〉, V−|k〉 = | − k〉. Using
Nz, N± rotational operators an SO(2) invariant operator constructed from
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rotational and vibrational operators in the simplest form can be written as
NV = NzVz + V+N2k

− + V−N2k
+ . This operator can be used as classifying op-

erator within a coupled rotation-vibrational basis. One of the resulting bands
consists of 2(N + k) + 1 eigenstates, whereas another band has 2(N − k) + 1
eigenstates.

To describe the transformation from one band system to another one, as it
is schematically shown in figure 7, we suggest the following explicit polynomial
form of the operator describing the wall-crossing

Hwall cross = a

2k−1∏
α=0

(Nz + Vz − (N + k − α)) + b
(
V−N2k

+ + V+N2k
−
)
. (10)

This operator is SO(2) invariant and consequently commutes with Jz. The
operator (10) has 2k zero eigenvalues associated with the eigenfunctions of
the Jz operator with eigenvalues N + k, N + k − 1, . . . , N − k + 1.

Eigenstates with zero eigenvalue of the local Hamiltonian (10) are named
zero-mode states. They are responsible for topological phase transitions.

Crossing a wall in the control parameter space gives rise to a deformation
of the model Hamiltonians in such a manner that the zero energy modes
disappear in the full quantum model and that the degeneracy of eigenvalues
disappears in the semi-quantum model. In general it is possible to imagine
several different situations. In the case of one zero eigenvalue, (the case with
k = 1/2), under the variation of control parameters corresponding to the
crossing of the boundary, this zero eigenvalue simply crosses the zero energy
either from the positive side to the negative side or vice versa. This is a generic
behavior.

In the case of two zero eigenvalues the scenario of their behavior under the
variation of control parameters can be similar. It is possible that two eigen-
values come from the same side (positive or negative), become degenerate at
zero, and go to another side crossing the zero. This scenario repeats the generic
scenario with one zero eigenvalue except that the zero eigenvalue becomes de-
generate and the redistribution consists of two eigenvalues. Such a scenario
was discussed on a concrete example of a molecular system in [3] for the CF4

molecule, where the redistribution of two 6-fold clusters was observed between
two bands. The fact of six-fold quasi-degeneracy is naturally not important
in our present context. It is a consequence of finite cubic symmetry. The im-
portant point here is the fact of a simultaneous transfer of two clusters. This
means that for each degeneracy point and, in other words for each wall-crossing
model Hamiltonian two zero eigenvalues are formed. In contrast, transfer of
only one cluster (or of only one of two levels for each local Hamiltonian) be-
tween these bands is forbidden by symmetry. Formation of several zero mode
states is illustrated schematically in figure 7.

Another possible scenario with two zero eigenvalues corresponds to two
eigenvalues coming to zero from different sides (one from the positive and an-
other from the negative). After crossing the boundary the two zero eigenvalues
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leave again to two different sides. The cumulative effect of crossing the bound-
ary is: no redistribution of energy levels between bands. This situation can be
compared with the spin Hall effect, where Hall currents related to electrons
with spin projections +1/2 and −1/2 are non-zero but opposite and the net
effect is zero. Apparently such a situation cannot appear in a problem with
m1−m2 6= 0. We need to combine the case with m1−m2 = 0 with additional
symmetry responsible for the formation of zero energy mode. Note that the
requirement m1 −m2 = 0 (in case of zero Chern numbers for each band) for
such scenario appears for the case of the axial symmetry group SO(2). In case
of a finite symmetry group the numbers of states in two bands can be differ-
ent but the formation of two zero energy states coming along the deformation
from two different bands remains possible.
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