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Glossary20

Classical limit The classical limit is the classical mechan-21

ical problem which can be constructed from a given22

quantum problem by some limiting procedure. Dur-23

ing such a construction the classical limiting mani-24

fold should be defined which plays the role of classical25

phase space. As soon as quantum mechanics is more26

general than classical mechanics, going to the classical27

limit from a quantum problem is much more reason-28

able than discussing possible quantizations of classical29

theories [73].30

Energy-momentummap In classical mechanics for any31

problem which allows the existence of several integrals32

of motion (typically energy and other integrals of-33

ten named as momenta) the Energy-Momentum (EM)34

map gives the correspondence between the phase space35

of the initial problem and the space of values of all in-36

dependent integrals of motion. The energy-momen-37

tum map introduces the natural foliation of the clas-38

sical phase space into common levels of values of en-39

ergy and momenta [13,34]. The image of the EM map40

is the region of the space of possible values of integrals41

of motion which includes regular and critical values.42

The quantum analog of the image of the energy-mo-43

mentum map is the joint spectrum of mutually com-44

muting quantum observables.45

Joint spectrum For each quantum problem a maximal 46

set of mutually commuting observables can be intro- 47

duced [16]. A set of quantum wave functions which 48

are mutual eigenfunctions of all these operators exists. 49

Each such eigenfunction is characterized by eigenval- 50

ues of all mutually commuting operators. The repre- 51

sentation of mutual eigenvalues of n commuting oper- 52

ators in the n-dimensional space gives the geometrical 53

visualization of the joint spectrum. 54

Monodromy In general, the monodromy characterizes 55

the evolution of some object after it makes a close path 56

around something. In classical Hamiltonian dynamics 57

the Hamiltonianmonodromy describes for completely 58

integrable systems the evolution of the first homology 59

group of the regular fiber of the energy-momentum 60

map after a close path in the regular part of the base 61

space [13]. 62

For a corresponding quantum problem the quantum 63

monodromy describes the modification of the local 64

structure of the joint spectrum after its propagation 65

along a close path going through a regular region of 66

the lattice. 67

Quantum bifurcation Qualitative modification of the 68

joint spectrum of the mutually commuting observ- 69

ables under the variation of some external (or inter- 70

nal) parameters and associated in the classical limit 71

with the classical bifurcation is named quantum bifur- 72

cation [59]. In other words the quantum bifurcation is 73

the manifestation of the classical bifurcation presented 74

in the classical dynamic system in the quantum version 75

of the same system. 76

Quantum-classical correspondence Starting from any 77

quantum problem the natural question consists of 78

defining the corresponding classical limit, i. e. the 79

classical dynamic variables forming the classical 80

phase space and the associated symplectic structure. 81

Whereas in simplest quantum problems defined in 82

terms of standard position and momentum operators 83

with commutation relation [qi ; p j] D i„ıi j , [qi ; qj] 84

D [pi ; p j] D 0 (i; j D 1 : : : n) the classical limit phase 85

space is the 2n-dimensional Euclidean space with stan- 86

dard symplectic structure on it, the topology of the 87

classical limit manifold in many other important for 88

physical applications cases can be rather non-triv- 89

ial [73,86]. 90

Quantum phase transition Qualitative modifications of 91

the ground state of a quantum system occurring under 92

the variation of some external parameters at zero tem- 93

perature are named quantum phase transitions [65]. 94

For finite particle systems the quantum phase transi- 95

tion can be considered as a quantum bifurcation [60]. 96
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2 Quantum Bifurcations

Spontaneous symmetry breaking Qualitative modifica-97

tion of the system of quantum states caused by per-98

turbation which has the same symmetry as the ini-99

tial problem. Local symmetry of solutions decreases100

but the number of solutions increases. In the energy101

spectra of finite particle systems the spontaneous sym-102

metry breaking produces an increase of the “quaside-103

generacy”, i. e. formation of clusters of quasi-degener-104

ate levels whose multiplicity can be much higher than105

the dimension of the irreducible representations of the106

global symmetry group [51].107

Symmetry breaking Qualitative changes in the proper-108

ties (dynamical behavior, and in particular in the joint109

spectrum) of quantum systems which are due to modi-110

fications of the global symmetry of the problem caused111

by external (less symmetrical than original problem)112

perturbation can be described as symmetry breaking113

effects. Typical effects consist of splitting of degener-114

ate energy levels classified initially according to irre-115

ducible representation of the initial symmetry group116

into less degenerate groups classified according to irre-117

ducible representation of the subgroup (the symmetry118

group of the perturbation) [47].119

Definition of the Subject120

Quantum bifurcations (QB) are qualitative phenomena121

occurring in quantum systems under the variation of some122

internal or external parameters. In order to make this def-123

inition a little more precise we add the additional require-124

ment: The qualitative modification of the “behavior” of125

a quantum system can be described as QB if it consists126

of the manifestation for the quantum system of the clas-127

sical bifurcation presented in classical dynamic systems128

which is the classical analog of the initial quantum system.129

Quantum bifurcations are typical elementary steps lead-130

ing from the simplest in some way effective Hamiltoni-131

an to more complicated ones under the variation of ex-132

ternal or internal parameters. As internal parameters one133

may consider the values of exact or approximate integrals134

of motion. The construction of an effective Hamiltonian135

is typically based on the averaging and/or reduction pro-136

cedure which results in the appearance of “good” quan-137

tum numbers (or approximate integrals of motion). The138

role of external parameters can be played by forces of ex-139

ternal champs, phenomenological constants in the effec-140

tive Hamiltonians, particle masses, etc. In order to limit141

the very broad field of qualitative changes and of possible142

quantum bifurcations in particular, we restrict ourselves143

mainly to quantum systems whose classical limit is asso-144

ciated with compact phase space and is nearly integrable.145

This means that for quantum problems the set of mutually 146

commuting observables can be constructed within a rea- 147

sonable physical approximation almost everywhere at least 148

locally. 149

Quantum bifurcations are supposed to be universal 150

phenomena which appear in generic families of quantum 151

systems and explain how relatively simple behavior be- 152

comes complicated under the variation of some physical 153

parameters. To know these elementary bricks responsible 154

for increasing complexity of quantum systems under con- 155

trol parameter modifications is extremely important in or- 156

der to make the extrapolation to regimes unaccessible to 157

experimental study. 158

Introduction 159

In order to better understand the manifestations of quan- 160

tum bifurcations and their significance for concrete phys- 161

ical systems we start with the description of several sim- 162

ple model physical problems which exhibit in some sense 163

the simplest (but nevertheless) generic behavior. Let us 164

start with the harmonic oscillator. A one-dimensional har- 165

monic oscillator has an equidistant system of eigenval- 166

ues. All eigenvalues can be labeled by consecutive integer 167

quantum numbers which have the natural interpretation 168

in terms of the number of zeros of eigenfunctions. The 169

classical limit manifold (classical phase space) is a stan- 170

dard Euclidean 2-dimensional space with natural vari- 171

ables fp; qg. The classical Hamiltonian for the harmonic 172

oscillator is an example of a Morse-type function which 173

has only one stationary point p D q D 0 and all non-zero 174

energy levels of the Hamiltonian are topological circles. If 175

nowwe deform slightly theHamiltonian in such a way that 176

its classical phase portrait remains topologically the same, 177

the spectrum of the quantum problem changes but it can 178

be globally described as a regular sequence of states num- 179

bered consecutively by one integer and such description 180

remains valid for any mass parameter value. Note, that for 181

this problem increasing mass means increasing quantum 182

state density and approaching classical behavior (classical 183

limit). 184

More serious modification of the harmonic oscilla- 185

tor can lead, for example, to creation of new stationary 186

points of the Hamiltonian. In classical theory this phe- 187

nomenon is known as fold bifurcation or fold catastro- 188

phe [3,31]. The phase portrait of the classical problem 189

changes qualitatively. As a function of energy the con- 190

stant level set of the Hamiltonian has different topologi- 191

cal structure (one circle, two circles, figure eight, circle and 192

a point, or simply point). The quantum version of the same 193

problem shows the existence of three different sequences 194
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Quantum Bifurcations 3

Quantum Bifurcations, Figure 1
Classical and quantumbifurcations for a one degree-of-freedom
system. Situations before (a,b,e) and after (c,d,f) the bifurcation
are shown. a Energymap for harmonic oscillator-type system. In-
verse images of each point are indicated. b Quantum state lat-
tice for harmonic oscillator-type system. c Energy map after the
bifurcation. Inverse images of each point are indicated. d Quan-
tum state lattice after bifurcation represented as composed of
three regular parts glued together. e Phase portrait for harmonic
oscillator-type system. Inverse images are S1 (generic inverse im-
age) and S0 (inverse image for minimal energy value). f Phase
portrait after bifurcation

of states which become clearly visible in the limit of the195

high density of states which can be reached by increasing196

the mass value parameter [42]. Such qualitative modifi-197

cation of the energy spectrum of the 1D-quantum Ham-198

iltonian gives the simplest example of the phenomenon199

which can be described as a quantum bifurcation. Figure 1200

shows a schematic representation of quantum bifurcations201

for a model system with one degree-of-freedom in parallel202

in quantum and classical mechanics.203

After looking for one simple example we can formulate204

a more general question which concerns the appearance in205

more general quantum systems of qualitative phenomena206

which can be characterized as quantum bifurcations.207

Simplest Effective Hamiltonians208

We turn now to several models which describe some spe-209

cific classes of relatively simple real physical quantum210

systems formed by a finite number of particles (atoms,211

molecules, . . . ). Spectra of such quantum objects are stud-212

ied nowadays with very high accuracy and this allows us to213

compare the behavior predicted by quantum bifurcations214

with the precise information about energy level structure215

found, for example, from high-resolution molecular spec-216

troscopy.217

Typically, the intra-molecular dynamics can be split 218

into electronic, vibrational, and rotational ones due to im- 219

portant differences in characteristic energy excitations or 220

in time scales. The most classical is the rotational mo- 221

tion and probably due to that the quantum bifurcations 222

as a counterpart to classical bifurcations were first studied 223

for purely rotational problems [59,61]. 224

Effective rotational Hamiltonians describe the inter- 225

nal structure of rotational multiplets formed by isolated 226

finite particle systems (atoms, molecules, nuclei) [35]. For 227

manymolecular systems in the ground electronic state any 228

electronic and vibrational excitations are much more en- 229

ergy consuming as compared with rotational excitations. 230

Thus, to study the molecular rotation the simplest physi- 231

cal assumption is to suppose that all electronic and all vi- 232

brational degrees-of-freedom are frozen. This means that 233

a set of quantum numbers is given which have the sense 234

of approximate integrals of motion specifying the char- 235

acter of vibrational and electronic motions in terms of 236

these “good” quantum numbers. At the same time for 237

a free molecule in the absence of any external fields due to 238

isotropy of the space the total angular momentum J and 239

its projection Jz on the laboratory fixed frame are strict 240

integrals of motion. Consequently, to describe the rota- 241

tional motion for fixed values of J and Jz it is sufficient 242

to analyze the effective problem with only one degree-of- 243

freedom. The dimension of classical phase space in this 244

case equals two and the two classical conjugate variables 245

are: the projection of the total angular momentum on the 246

body fixed frame and conjugate angle variable. The classi- 247

cal phase space is topologically a two-dimensional sphere, 248

S2. There is a one-to-one correspondence between the 249

points on a sphere and the orientation of the angular mo- 250

mentum in the body-fixed frame. Such a representation 251

gives a clear visualization of a classical rotational Hamil- 252

tonian as a function defined over a sphere [35,49]. 253

In quantum mechanics the rotation of molecules is 254

traditionally described in terms of an effective rotational 255

Hamiltonian which is constructed as a series in rotational 256

operators Jx , Jy, Jz , the components of the total angular 257

momentum J. In a suitably chosen molecular fixed frame 258

the effective Hamiltonian has the form 259

Heff D AJ2x C BJ2y CCJ2z C
X

c˛ˇ� J˛x Jˇy J�z C � � � ; (1) 260

where A, B, C and c˛ˇ� are constants. To relate quan- 261

tum and classical pictures we note that J2 and energy 262

are integrals of Euler’s equations of motion for dynamic 263

variables Jx, Jy, Jz . The phase space of the classical ro- 264

tational problem with constant jJj is S2, the two-dimen- 265

sional sphere, and it can be parametrized with spherical 266



Unc
or

re
cte

d 
Pro

of

20
08

-1
0-

16

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry 146 — 2008/10/16 — 10:08 — page 4 — le-tex
��

�� ��

4 Quantum Bifurcations

angles (�; �) in such a way that the points on S2 define the267

orientation of J, i. e. the position of the axis and the direc-268

tion of rotation. To get the classical interpretation of the269

quantum Hamiltonian we introduce the classical analogs270

of the operators Jx , Jy, Jz271

J �!
0

@
Jx
Jy
Jz

1

A D
0

@
sin � cos �

sin � sin�

cos �

1

A
p
J(J C 1) (2)272

and consider the rotational energy as a function of the dy-273

namical variables (�; �) and the parameter J.274

Thus, for an effective rotational Hamiltonian the cor-275

responding classical symbol is a function EJ(�; �) de-276

fined over S2 and named usually the rotational energy sur-277

face [35].278

Taking into account the symmetry imposed by the ini-279

tial problem and the topology of the phase space the sim-280

plest rotational Hamiltonian can be constructed. In clas-281

sical mechanics the simplest Hamiltonian can be defined282

(using Morse theory [55,88]) as a Hamiltonian function283

with the minimal possible number of non-degenerate sta-284

tionary points compatible with the symmetry group ac-285

tion of the classical phase space. Morse theory in the pres-286

ence of symmetry (or equivariant Morse theory) implies287

important restrictions on the number of minima, max-288

ima, and saddle points. In the absence of symmetry the289

simplest Morse type function on the S2 phase space has290

one minimum and one maximum, as a consequence of291

Morse inequalities. In the presence of non-trivial symme-292

try group action the minimal number of stationary points293

on the sphere increases. For example, many asymmet-294

ric top molecules (possessing three different moment of295

inertia of the equilibrium configuration) have D2h sym-296

metry group [47]. This group includes rotations over �297

around fx; y; zg axes, reflections in fxy; yz; zxg planes298

and inversion as symmetry operations. Any D2h invari-299

ant function on the sphere has at least six stationary points300

(two equivalent minima, two equivalent maxima, and two301

equivalent saddle points). This means that in quantum302

mechanics the asymmetric top has eigenvalueswhich form303

two regular sequences of quasi-degenerate doublets with304

the transition region between them. The correspondence305

between the quantum spectrum and the structure of the306

energy map for the classical problem is shown in Fig. 2.307

Highly symmetrical molecules which have cubic symme-308

try, for example, can be described by a simplest Morse-309

type Hamiltonian with 26 stationary points (6 and 8 min-310

ima/maxima and 12 saddle points). As a consequence, the311

corresponding quantum Hamiltonian shows the presence312

of six-fold and eight-fold quasi-degenerate clusters of ro-313

tational levels.314

Quantum Bifurcations, Figure 2
a Schematic representation of the energy level structure for
asymmetric top molecule. Vertical axis corresponds to energy
variation. Quantum levels are classified by the symmetry group
of the asymmetric top. Two fold clusters at two ends of the ro-
tational multiplet are formed by states with different symmetry.
b Foliation of the classical phase space (S2 sphere) by constant
levels of the Hamiltonian given in the form of its Reeb graph.
Each point corresponds to a connected component of the con-
stant level set of the Hamiltonian (energy). c Geometric repre-
sentation of the constant energy sections

As soon as the simplest classical Hamiltonian is char- 315

acterized by the appropriate system of stationary points 316

the whole region of possible classical energy values (in 317

the case of dynamical systems with only one degree-of- 318

freedom the energy-momentum map becomes simply the 319

energy map) appears to be split into different regions cor- 320

responding to different dynamical regimes, i. e. to differ- 321

ent regions of the phase portrait foliated by topologically 322

non-equivalent systems of classical trajectories. Accord- 323

ingly, the energy spectrum of the corresponding quantum 324

Hamiltonian can be qualitatively described as formed by 325

regular sequences of states within each region of the clas- 326

sical energy map. 327

Quantum bifurcations are universal phenomena 328

which lead to a new organization of the energy spec- 329

trum into qualitatively different regions in accordance 330

with corresponding qualitative modifications of the clas- 331

sical energy-momentum map under the variation of some 332

control parameter. 333
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Quantum Bifurcations 5

Simplest Hamiltonians334

for Two Degree-of-Freedom Systems335

When the quantum system has two or larger number of336

degrees-of-freedom the simplest dynamical regimes often337

correspond in classical mechanics to a quasi-regular dy-338

namics which can be reasonably well approximated by an339

integrable model. The integrable model in classical me-340

chanics can be constructed by normalizing the Hamilto-341

nian and by passing to so-called normal forms [2,49]. The342

quantum counterpart of normalization is the construction343

of a mutually commuting set of operators which should344

not be mistaken with quantization of systems in normal345

form. Corresponding eigenvalues can be used as “good”346

quantum numbers to label quantum states. A joint spec-347

trum of mutually commuting operators corresponds to348

the image of the energy-momentum map for the classical349

completely integrable dynamical problem. In this context350

the question about quantum bifurcations first of all leads351

to the question about qualitative classification of the joint352

spectra of mutually commuting operators. To answer this353

question we need to start with the qualitative description354

of foliations of the total phase space of the classical prob-355

lem by common levels of integrals of motion which are356

mutually in involution [2,7]. One needs to distinguish the357

regular and the singular values of the energy-momentum358

map. For Hamiltonian systems the inverse images of the359

regular values are regular tori (one or several) [2]. A lot360

of different singularities are possible. In classical mechan-361

ics different levels of the classifications are studied in de-362

tail [7]. The diagram which represents the image of the363

classical EM map together with its stratification into reg-364

ular and critical values is named the bifurcation diagram.365

The origin of such a name is due to the fact that the val-366

ues of integrals of motion can be considered as control pa-367

rameters for the phase portraits (inverse images of the EM368

map) of the reduced systems.369

For quantum problems the analog of the classical strat-370

ification of the EMmap for integrable systems is the split-371

ting of the joint spectrum of several commuting observ-372

ables into regions formed by regular lattices of joint eigen-373

values. Any local simply connected neighborhood of a reg-374

ular point of the lattice can be deformed into part of the375

regular Zn lattice of integers. This means that local quan-376

tum numbers can be consistently introduced to label states377

of the joint spectrum. If the regular region is not simply378

connected it still can be characterized locally by a set of379

“good” quantum numbers. At the same time this is impos-380

sible globally. Likewise in classical mechanics the Ham-381

iltonian monodromy is the simplest obstruction to the382

existence of the global action-angle variables [17,57], in383

Quantum Bifurcations, Figure 3
Joint spectrum of two commuting operators together with the
image of the classical EMmap for the resonant 1 : (�1) oscillator
given by (3). Quantum monodromy is seen as a result of trans-
portation of the elementary cell of the quantum lattice along
a close path through a non simply connected region of the regu-
lar part of the image of the EMmap. Taken from [58]

quantum mechanics the analog notion of quantum mon- 384

odromy [14,33,68,80] characterizes the global non-trivial- 385

ity of the regular part of the lattice of joint eigenvalues. 386

Figure 3 demonstrates the effect of the presence of a clas- 387

sical singularity (isolated focus-focus point) on the global 388

properties of the quantum lattice formed by joint eigenval- 389

ues of two commuting operators for a simple problemwith 390

two degrees-of-freedom, which is essentially the 1 : (�1) 391

resonant oscillator [58]. Two integrals of motions in this 392

example are chosen as 393

f1 D 1
2

�
p21 C q21

� � 1
2

�
p22 C q22

�
; (3) 394

f2 D p1q2 C p2q1 C 1
4

�
p21 C q21 C p22 C q22

�2
: (4) 395

Locally in any simply connected region which does not 396

include the classical singularity of the EM map situated 397

at f1 D f2 D 0, the joint spectrum can be smoothly de- 398

formed to the regular Z2 lattice [58,89]. Such lattices are 399

shown, for example, in Fig. 4. If somebody wants to use 400

only one chart to label states, it is necessary to take care 401

in respect of the multivaluedness of such a representation. 402

There are two possibilities: 403

(i) One makes a cut and maps the quantum lattice to 404

a regular Z2 lattice with an appropriate solid angle re- 405

moved from it (see Fig. 5 [58,68,89]). Points on the 406

boundary of such a cut should be identified and a spe- 407

cial matching rule explaining how to cross the path 408

should be introduced. Similar constructions are quite 409

popular in solid state physics in order to represent 410

defects of lattices, like dislocations, disclinations, etc. 411

We just note that the “monodromy defect” introduced 412
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6 Quantum Bifurcations

Quantum Bifurcations, Figure 4
Two chart atlas which covers the quantum lattice of the 1 : (�1) resonant oscillator system represented in Fig. 3. Top plots show
the choice of basis cells and the gluing map between the charts. Bottom plots show the transport of the elementary cell (dark gray
quadrangles) in each chart. Central bottom panel shows close path � and its quantum realization (black dots) leading to non-trivial
monodromy (compare with Fig. 3). Taken from [58]

Quantum Bifurcations, Figure 5
Construction of the 1 : (�1) lattice defect starting from the reg-
ular Z2 lattice. The solid angle is removed from the regular Z2

lattice and points on the so-obtained boundary are identified
by vertical shifting.Dark gray quadrangles show the evolution of
an elementary lattice cell along a closed path around the defect
point. Taken from [58]

in such a way is different from standard construction413

for dislocation and disclination defects [45,50]. The414

inverse procedure of the construction of the “mon-415

odromy defect” [89] from a regular lattice is repre-416

sented in Fig. 5. Let us note that the width of the solid417

angle removed depends on the direction of the cut and418

the direction of the cut itself can be chosen in an am-419

biguous way.420

(ii) An alternative possibility is to make a cut in such421

a way that the width of the removed angle becomes422

equal to zero. For focus-focus singularities one such 423

direction always exists and is named an eigenray by 424

Symington [75]. The same construction is used in 425

some physical papers [10,11,84]. The inconvenience 426

of such a procedure is the appearance of discontinu- 427

ity of the slope of the constant action (quantum num- 428

ber) line at the cut, whereas the values of actions them- 429

selves are continued (see Fig. 6). This gives the wrong 430

impression that this eigenray is associated with some 431

special non-regular behavior of the initial problem, 432

whereas there is no singularity except at one focus- 433

focus point. 434

Bifurcations and Symmetry 435

The general mathematical answer about the possible qual- 436

itative modifications of a system of stationary points of 437

functions depending on some control parameters can be 438

found in bifurcation (or catastrophe) theory [3,31,32]. It 439

is important that the answer depends on the number of 440

control parameters and on the symmetry. Very simple 441

classification of possible typical bifurcations of stationary 442

points of a one-parameter family of functions under pres- 443

ence of symmetry can be formulated for dynamical sys- 444

tems with one degree-of-freedom. The situation is partic- 445

ularly simple because the phase space is two-dimensional 446

and the complete list of local symmetry groups (which are 447
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Quantum Bifurcations 7

Quantum Bifurcations, Figure 6
Representation of the quantum joint spectrum for the “Mexican
hat” potential V(r) D ar4 � br2 with the “cut” along the eigen-
ray. For such a cut the left and the right limits at the cut give the
same values of actions (good quantum numbers) but the lines of
constant values of actions exhibit a “kink” at the cut (the discon-
tinuity of the first derivative)

the stabilizers of stationary points) includes only 2D-point448

groups [83]. It should be noted that the global symmetry449

of the problem can be larger than the local symmetry of450

the bifurcating stationary points. In such a case the bifur-451

cations occur simultaneously for all points forming one452

orbit of the global symmetry group [51,52]. We describe453

briefly here (see Table 1) the classification of the bifurca-454

tions of stationary points in the presence of symmetry for455

families of functions depending on one parameter and as-456

sociated quantum bifurcations [59,61]. Their notation in-457

cludes the local symmetry group and several additional458

indexes which specify creation/annihilation of stationary459

points and the local or non-local character of the bifurca-460

tion. The list of possible bifurcations includes:461

C˙
1 A non-symmetrical non-local bifurcation resulting in462

the appearance (+) or disappearance (�) of a stable-463

unstable pair of stationary points with the trivial local464

symmetryC1. In the quantumproblem this bifurcation465

is associated with the appearance or disappearance of466

a new regular sequence of states glued at its end with467

the intermediate part of another regular sequence of468

quantum states [42,77].469

CL˙
2 A local bifurcation with the broken C2 local sym-470

metry. This bifurcation results either in appearance of471

a triple of points (two equivalent stable points with C1472

local symmetry and one unstable point with C2 local473

symmetry) instead of one stable point with C2 sym-474

metry, or in inverse transformation. The number of 475

stationary points in this bifurcation increases or de- 476

creases by two. For the quantum problem the result is 477

the transformation of a local part of a regular sequence 478

of states into one sequence of quasi-degenerate dou- 479

blets. 480

CN˙
2 A non-local bifurcation with the broken C2 local 481

symmetry. This bifurcation results in appearance (+) 482

or disappearance (�) of two new unstable points with 483

broken C2 symmetry and simultaneous transforma- 484

tion of the initially stable (for +) or unstable (for �) 485

stationary point into an unstable/stable one. The num- 486

ber of stationary points in this bifurcation increases or 487

decreases by two. For the quantumproblem thismeans 488

the appearance of a new regular sequence of states near 489

the separatrix between two different regular regions. 490

CN
n (n D 3; 4) A non-local bifurcation corresponding to 491

passage of n unstable stationary points through a sta- 492

ble stationary point with Cn local symmetry which is 493

accompanied with the minimum$ maximum change 494

for a stable point with the Cn local symmetry. The 495

number of stationary points remains the same. For 496

the quantum problem this bifurcation corresponds to 497

transformation of the increased sequence of energy 498

levels into a decreased sequence. 499

CL˙
n (n � 4) A local bifurcation which results in appear- 500

ance (+) or disappearance (�) of n stable and n un- 501

stable stationary points with the broken Cn symmetry 502

and a simultaneous minimum $ maximum change of 503

a stable point with the Cn local symmetry. The num- 504

ber of stationary points increases or decreases by 2n. In 505

the quantum problem after bifurcation a new sequence 506

of n-times quasi-degenerate levels appears/disappears. 507

Universal quantum Hamiltonians which describe the 508

qualitative modification of the quantum energy level sys- 509

tem around the bifurcation point are given in [59,61]. 510

The presence of symmetry makes it much easier to ob- 511

serve the manifestation of quantum bifurcations. Modi- 512

fication of the local symmetry of stable stationary points 513

results in the modification of the cluster structure of en- 514

ergy levels, i. e. the number and the symmetry types of 515

energy level forming quasi-degenerate groups of levels. 516

This phenomenon is essentially the spontaneous break- 517

ing of symmetry [51]. Several concrete molecular sys- 518

tems which show the presence of quantum bifurcations 519

in rotational structure under rotational excitation are 520

cited in Table 2. Many other examples can be found 521

in [9,23,59,67,71,87,88,91,92] and references therein. In 522

purely vibrational problems breaking dynamical SU(N) 523

symmetry of the isotrope harmonic oscillator till finite 524
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8 Quantum Bifurcations

Quantum Bifurcations, Table 1
Bifurcations in the presence of symmetry. Solid lines denote stable stationary points. Dashed lines denote unstable stationary points.
Numbers in parenthesis indicate the multiplicity of stationary points

Quantum Bifurcations, Table 2
Molecular examples of quantum bifurcations in the rotational
structure of individual vibrational components under the varia-
tion of the absolute value of angular momentum, J. Jc is the crit-
ical value corresponding to bifurcation

Molecule Component Jc Bifurcation type

SiH4 �2(C) 12 CNC
2

SnH4 �2(�) 10 CNC
2 ; CN

3 ;CN
4 ;CN�

2

CF4 �2(C) 50 CLC
4

H2Se j0i 20 CLC
2

symmetry group results in formation of so-called non-525

linear normal modes [23,54] or quasimodes [1], or local526

modes [9,25,38,39,43,46,48]. In the case of two degrees-527

of-freedom the analysis of the vibrational problem can be528

reduced to the analysis of the problem similar to the rota-529

tional one [35,66] and all the results about possible types530

of bifurcations found for rotational problems remain valid531

in the case of intra-molecular vibrational dynamics.532

Imperfect Bifurcations533

According to general results the possible types of bifur-534

cations which are generically present (and persist un-535

der small deformations) in a family of dynamical systems536

strictly depend on the number of control parameters. In537

the absence of symmetry only one bifurcation of station-538

ary points is present for a one-parameter family of Morse-539

type functions, namely the formation (annihilation) of two540

new stationary points. This corresponds to saddle-node541

bifurcation for one degree-of-freedom Hamiltonian sys-542

tems. The presence of symmetry increases significantly the543

number of possible bifurcations even for families with only544

one parameter [31,32]. From the physical point-of-view it545

is quite natural to study the effect of symmetry breaking on546

the symmetry allowed bifurcation. Decreasing symmetry547

naturally results in the modification of the allowed types548

of bifurcations but at the same time it is quite clear that549

at sufficient slight symmetry breaking perturbation the re-550

sulting behavior of the system should be rather close to the 551

behavior of the original system with higher symmetry. 552

In the case of a small violation of symmetry the so- 553

called “imperfect bifurcations” can be observed. Imperfect 554

bifurcations, which are well known in the classical theory 555

of bifurcations [32] consist of the appearance of station- 556

ary points in the neighborhood of another stationary point 557

which does not change its stability. In some way one can 558

say that imperfect bifurcation mimics generic bifurcation 559

in the presence of higher symmetry by the special organi- 560

zation of several bifurcations which are generic in the pres- 561

ence of lower symmetry. Naturally quantum bifurcations 562

follow the same behavior under the symmetry breaking as 563

classical ones. Very simple and quite natural examples of 564

imperfect quantumbifurcations were demonstrated on the 565

example of the rotational structure modifications under 566

increasing angular momentum [90]. The idea of appear- 567

ance of imperfect bifurcations is as follows. Let us suppose 568

that some symmetrical molecule demonstrates under the 569

variation of angular momentum a quantum rotational bi- 570

furcation allowed by symmetry. The origin of this bifur- 571

cation is due, say, to centrifugal distortion effects which 572

depend strongly on J but are not very sensitive to small 573

variation of masses even in the case of symmetry breaking 574

isotopic substitution. In such a case a slight modification 575

of the masses of one or several equivalent atoms breaks the 576

symmetry and this symmetry violation can be made very 577

weak due to the small ratio �M/M under isotope substi- 578

tution. In classical theory the effect of symmetry breaking 579

can be easily seen through the variation of the position of 580

stationary points with control parameter. For example, in- 581

stead of a pitchfork bifurcation which is typical for C2 lo- 582

cal symmetry, we get for the unsymmetrical problem (after 583

slight breaking of C2 symmetry) a smooth evolution of the 584

position of one stationary point and the appearance of two 585

new stationary points in fold catastrophe (see Fig. 7). In 586

associated quantum bifurcations the most important ef- 587

fect is the splitting of clusters. But one should be care- 588

ful with this interpretation because in quantum mechan- 589

ics of finite particle systems the clusters are always split 590
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Quantum Bifurcations 9

due to quantum mechanical tunneling between different591

equivalent regions of localization of quantum wave func-592

tions. Intercluster splitting increases rapidly approaching593

the region of classical separatrix. The behavior of quan-594

tum tunneling was studied extensively in relation to the595

quantum breathers problem [6,29]. Systematic application596

of quasi-classical methods to reproduce quantum energy597

level structure near the singularities of the energy-momen-598

tum maps where exponentially small corrections are im-599

portant is possible but requires special efforts (see for ex-600

ample [12]) and we will not touch upon this problem here.601

Organization of Bifurcations602

The analysis of the quantum bifurcations in concrete ex-603

amples of rotating molecules have shown that in some604

cases the molecule undergoes several consecutive qualita-605

tive changes which can be interpreted as a sequence of bi-606

furcations which sometimes cannot even be separated into607

elementary bifurcations for the real scale of the control pa-608

rameter [88]. One can imagine in principle that successive609

bifurcations lead to quantum chaos in analogy with clas-610

sical dynamical systems where the typical scenario for the611

transition to chaos is through a sequence of bifurcations.612

Otherwise, the molecular examples were described with613

effective Hamiltonians depending only on one degree-of-614

freedom and the result of the sequence of bifurcations was615

just the crossover of the rotational multiplets [64]. In some616

sense such a sequence of bifurcations can be interpreted as617

an imperfect bifurcation assuming initially higher dynam-618

ical symmetry, like the continuous SO(3) group.619

Later, a similar crossover phenomenon was found in a620

quite different quantum problem, like the hydrogen atom621

in external fields [24,53,72]. The general idea of such or-622

ganization of bifurcations is based on the existence of two623

different limiting cases of dynamical regimes for the same624

physical quantum system (often under presence of the625

same symmetry group) which are qualitatively different.626

For example, the number of stationary points, or their sta-627

bility differs. If H1 and H2 are two corresponding effec-628

tive Hamiltonians, the natural question is: Is it possible to629

transform H1 into H2 by a generic perturbation depend-630

ing on only one parameter? And if so, what is the minimal631

number of bifurcations to go through?632

The simplest quantum system for which such a ques-633

tion becomes extremely natural is the hydrogen atom in634

the presence of external static electric (F) andmagnetic (G)635

fields. Two natural limits – the Stark effect in the electric636

field and Zeeman effect in the magnetic field – show quite637

different qualitative structure even in the extremely low638

field limit [15,20,63,72,78]. Keeping a small field one can 639

go from one (Stark) limit to another (Zeeman) and this 640

transformation naturally goes through qualitatively differ- 641

ent regimes [24,53]. In spite of the fact that the hydro- 642

gen atom (even without spin and relativistic corrections) 643

is only a three degree-of-freedom system, the complete de- 644

scription of qualitatively different regimes in a small field 645

limit is still not done and remains an open problem [24]. 646

An example of clearly seen qualitative modifications of 647

the quantum energy level system of the hydrogen atomun- 648

der the variation of F/G ratio of the strengths of two par- 649

allel electric and magnetic fields is shown in Fig. 8. The 650

calculations are done for a two degree-of-freedom system 651

after the normalization with respect to the global action. 652

In quantum mechanics language this means that only en- 653

ergy levels which belong to the same n-shell of the hy- 654

drogen atom are treated and the interaction with other n0
655

shells is taken into account only effectively. The limiting 656

classical phase space for this effective problem is the four- 657

dimensional space S2 � S2, which is the direct product 658

of two two-dimensional spheres. In the presence of axial 659

symmetry this problem is completely integrable and the 660

Hamiltonian and the angular momentum provide a com- 661

plete set of mutually commuting operators. Energies of 662

stationary points of classical Hamiltonian limit are shown 663

on the same Fig. 8 along with quantum levels. When one 664

of the characteristic frequencies goes through zero, the so- 665

called collapse phenomena occurs. Some other non-triv- 666

ial resonance relations between two frequencies are also 667

indicated. These resonances correspond to special orga- 668

nization of quantum energy levels. At the same time it 669

is not necessary here to go to joint spectrum representa- 670

tion in order to see the reorganization of stationary points 671

of the Hamiltonian function on S2 � S2 phase space un- 672

der the variation of the external control parameter F/G. A 673

more detailed treatment of qualitative features of the en- 674

ergy level systems for the hydrogen atom in low fields is 675

given in [15,20,24]. 676

BifurcationDiagrams for Two Degree-of-Freedom 677

Integrable Systems 678

Let us consider now the two degree-of-freedom integrable 679

system with compact phase space as a bit more complex 680

but still reasonably simple problem. Many examples of 681

such systems possess EM maps with the stratification of 682

the image formed by the regular part surrounded by the 683

singular boundary. The most naturally arising examples of 684

classical phase spaces, like S2 � S2, CP2, are of that type. 685

All internal points on the image of the EM map are regu- 686

lar in these cases. In practice, real physical problems, even 687
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10 Quantum Bifurcations

Quantum Bifurcations, Figure 7
Imperfect bifurcations. a Position x of stationary points as a function of control parameter � during a pitchfork bifurcation in the
presence of C2 local symmetry. b Modifications induced by small symmetry perturbation of lower symmetry. Solid line: Stable sta-
tionary points. Dashed lines: Unstable stationary points

Quantum Bifurcations, Figure 8
Reorganization of the internal structure of the n-multiplet of the
hydrogen atom in small parallel electric andmagnetic fields. En-
ergies of stationary points of the classical Hamiltonian (red solid
lines) are shown together with quantum energy levels (blue solid
lines). The figure is done for n D 10 (there are n2 D 100 energy
levels forming this multiplet). As the ratio F/G of electric F and
magneticG fields varies this twodegree-of-freedomsystemgoes
through different zones associated with special resonance rela-
tions between two characteristic frequencies (shown by vertical
dashed lines). Taken from [24]

after necessary simplifications and approximations lead to688

more complicated models. Some examples of fragments of689

images of the EM map with internal singular points are690

shown in Fig. 9. In classical mechanics the inverse images691

Quantum Bifurcations, Figure 9
Typical images of the energy momentum map for completely
integrable Hamiltonian systems with two degrees-of-freedom
in the case of: a integer monodromy, b fractional monodromy,
c non-local monodromy, and d bidromy. Values in the light
shaded area lift to single 2-tori; values in the dark shaded area
lift to two 2-tori. Taken from [69]

of critical values are singular tori of different kinds. Some 692

of them are represented in Fig. 10. Inverse images of criti- 693

cal points situated on the boundary of the EM image have 694

lower dimension. They can be one-dimensional tori (S1- 695

circles), or zero-dimensional (points). 696

The natural question now is to describe typical generic 697

modifications of the Hamiltonian which lead to qualitative 698

modifications of the EMmap image in classical mechanics 699

and to associated modifications of the joint spectrum in 700

quantum mechanics. 701

The simplest classical bifurcation leading to modifica- 702

tion of the image of the EM map is the Hamiltonian Hopf 703

bifurcation [79]. It is associated with the following modi- 704

fication of the image of the EM map. The critical value of 705

the EM map situated on the boundary leaves the bound- 706

ary and enters an internal domain of regular values (see 707

Fig. 11) CE2 . As a consequence, the toric fibration over the 708

closed path surrounding an isolated singularity is non- 709

trivial. Its non-triviality can be characterized by the Ham- 710

CE2 Please check sentence.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Quantum Bifurcations 11

Quantum Bifurcations, Figure 10
Two-dimensional singular fibers in the case of integrable Hamiltonian systems with two degrees-of-freedom (left to right): singular
torus, bitorus, pinched and curled tori. Singular torus corresponds to critical values in Fig. 9c, d (ends of bitoris line). Bitorus corre-
sponds to critical values in Fig. 9c, d, which belong to singular line (fusion of two components). Pinched torus corresponds to isolated
focus-focus singularity in Fig. 9a. Curled torus is associated with critical values at singular line in Fig. 9b (fractional monodromy).
Taken from [69]

Quantum Bifurcations, Figure 11
Qualitative modification of the image of the EM map due to
Hamiltonian Hopf bifurcation. Left: Simplest integrable toric fi-
bration over S2 � S2 classical phase space. A, B, C, D: Critical val-
ues corresponding to singular S0 fibers. Regular points on the
boundary correspond to S1 fibers. Regular internal points: Reg-
ular T2 fibers. Right: Appearance of an isolated critical value in-
side the field of regular values. Critical value B corresponds to
pinched torus shown in Fig. 10

iltonian monodromy which describes the mapping from711

the fundamental group of the base space into the first ho-712

mology group of the regular fiber [18]. A typical pattern713

of the joint spectrum around such a classical singularity714

is shown in Fig. 3. The joint spectrum manifests the pres-715

ence of quantum monodromy. Its interpretation in terms716

of regular lattices is given in Figs. 4 and 5.717

Taking into account additional terms of higher order718

it is possible to distinguish different types of Hamiltonian719

Hopf bifurcations usually named as subcritical and super-720

critical [19,79]. New qualitative modification, for exam-721

ple, corresponds to transformation of an isolated singular722

value of the EMmap into an “island”, i. e. the region of the723

EM image filled by points whose inverse images consist724

of two connected components. Integrable approximation725

for vibrational motion in the LiCN molecule shows the726

presence of such an island associated with the non-local727

quantum monodromy (see Fig. 12) [40]. The monodromy728

naturally coincides with the quantum monodromy of iso-729

lated focus-focus singularity which deforms continuously730

into the islandmonodromy. It is interesting to note that in 731

molecule HCN which is rather similar to LiCN, the region 732

with two components in the inverse image of the EMmap 733

exists also but the monodromy cannot be defined due to 734

impossibility to go around the island [22]. 735

In the quantum problem the presence of “standard” 736

quantum monodromy in the joint spectrum of two mutu- 737

ally commuting observables can be seen through the map- 738

ping of a locally regular part of the joint spectrum lat- 739

tice to an idealized Z2 lattice. Existence of local actions 740

for the classical problem which are defined almost every- 741

where and the multivaluedness of global actions from one 742

side and the quantum-classical correspondence from an- 743

other side allow the interpretation of the joint spectrum 744

with quantummonodromy as a regular lattice with an iso- 745

lated defect. 746

Recently, the generalization of the notion of quan- 747

tum (and classical) monodromy was suggested [21,58]. 748

For quantum problems the idea is based on the possibil- 749

ity to study instead of the complete lattice formed by the 750

joint spectrum only a sub-lattice of finite index. Such a 751

transformation allows one to eliminate certain “weak line 752

singularities” presented in the image of the EM map. The 753

resulting monodromy is named “fractional monodromy” 754

because for the elementary cell in the regular region the 755

formal transformation after a propagation along a close 756

path crossing “weak line singularities” turns out to be rep- 757

resented in a form of a matrix with fractional coefficients. 758

An example of quantum fractional monodromy can be 759

given with a 1 : (�2) resonant oscillator system possessing 760

two integrals of motion f 1, f 2 in involution: 761

f1 D !

2
�
p21 C q21

� � 2!

2
�
p22 C q22

� C R1(q; p) ; (5) 762
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12 Quantum Bifurcations

Quantum Bifurcations, Figure 12
Quantum joint spectrum for the quantum model problem with two degrees-of-freedom describing two vibrations in the LiCN
molecule. The non-local quantum monodromy is shown by the evolution of the elementary cell of the quantum lattice around the
singular line associated with gluing of two regular lattices corresponding in molecular language to two different isomers, LiCN and
LiNC. Classical limit (left) shows the possible deformation of isolated focus-focus singularity for pendulum to non-local island singu-
larity for LiNC model. In contrast to LiCN, the HCN model has an infinite island which cannot be surrounded by a close path. Taken
from [40]

f2 D Im
�
(q1 C ip1)2(q2 C ip2)

� C R2(q; p) : (6)763

The corresponding joint spectrum for the quantum prob-764

lem is shown in Fig. 13. It can be represented as a regu-765

lar Z2 lattice with a solid angle removed (see Fig. 14). The766

main difference with the standard integer monodromy767

representation is due to the fact that even after gluing two768

sides of the cut we get the one-dimensional singular stra-769

tum which can be neglected only after going to a sub-lat-770

tice (to a sub-lattice of index 2 for 1 : 2 fractional singular-771

ity).772

Another kind of generalization of the monodromy no-773

tion is related to the appearance of multi-component in-774

verse images for the EM maps. We have already men-775

tioned such a possibility with the appearance of non-lo-776

cal monodromy and Hamiltonian Hopf bifurcations (see777

Fig. 12). But in this case two components of the inverse778

image belong to different regular domains and cannot be779

joined by a path going only through regular values. An-780

other possibility is suggested in [69,70] and is explained781

schematically in Fig. 15. This figure shows that the ar-782

rangement of fibers can be done in such a way that one783

connected component can be deformed into another con-784

nected component along a path which goes only through785

regular tori. The existence of a quantum joint spectrum 786

corresponding to such a classical picture was demon- 787

strated on the example of a very well-known model prob- 788

lem with three degrees-of-freedom: Three resonant oscil- 789

lators with 1 : 1 : 2 resonance, axial symmetry and with 790

small detuning between double degenerate and non-de- 791

generate modes [30,70]. The specific behavior of the joint 792

spectrum for this model can be characterized as self-over- 793

lapping of a regular lattice. The possibility to propagate 794

the initially chosen cell through a regular lattice from the 795

region of self-overlapping of lattice back to the same re- 796

gion but to another component was named “bidromy”. 797

More complicated construction for the same problem al- 798

lows us to introduce the “bipath” notion. The bipath starts 799

at a regular point of the EM image, and crosses the singu- 800

lar line by splitting itself into two components CE3 . Each 801

component belongs to its proper lattice in the self-over- 802

lapping region. Two components of the path can go back 803

through the regular region only and fuse together. The be- 804

havior of quantum cells along a bipath is shown in Fig. 16. 805

Providing a rigorous mathematical description of such a 806

construction is still an open problem. Although the orig- 807

inal problem has three degrees-of-freedom, it is possible 808

to construct a model system with two degrees-of-freedom 809

and with similar properties. 810

CE3 Please check sentence.
CE4 Is my change here OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Quantum Bifurcations 13

Quantum Bifurcations, Figure 13
Joint quantum spectrum for two-dimensional non-linear 1 : (�2) resonant oscillator (5). The singular line is formed by critical values
whose inverse images are curled tori shown in Fig. 10. In order to get the unambiguous result of the propagation of the cell of the
quantum lattice along a closed path crossing the singular line, the elementary cell is doubled. Taken from [58]

Quantum Bifurcations, Figure 14
Representation of a latticewith 1 : 2 rational defect by cutting and gluing. Left: The elementary cell goes through cut in an ambiguous
way. The result depends on the placewhere the cell crosses the cut. Right: Double cell crosses the cut in an unambiguousway. Taken
from [58]

a bc

b

Quantum Bifurcations, Figure 15
Schematic representation of the inverse images for a problem
with bidromy in the form of the unfolded surface. Each con-
nected component of the inverse image is represented as a sin-
gle point. The path b0 � a � b00 starts and ends at the same point
of the space of possible values of integrals of motion but it
starts at one connected component and ends at another one.
At the same time the path goes only through regular tori. Taken
from [70]

Bifurcations of “QuantumBifurcationDiagrams” 811

We want now to stress some differences in the role of in- 812

ternal and external control parameters. From one point- 813

of-view a quantum problem, which corresponds in the 814

classical limit to a multidimensional integrable classical 815

model, possesses a joint spectrum qualitatively described 816

by a “quantum bifurcation diagram”. This diagram shows 817

that the joint spectrum is formed from several parts of reg- 818

ular lattices through a cutting and gluing procedure. Going 819

from one regular region to another is possible by crossing 820

singular lines. The parameter defined along such a path 821

can be treated as an internal control parameter. It is essen- 822

tially a function of values of integrals of motion. To cross 823

the singular line is equivalent to passing CE5 the quantum 824

bifurcation for a family of reduced systems with a smaller 825

number of degrees of freedom. 826

On the other side we can ask the following more gen- 827

eral question. What kinds of generic modifications of “bi- 828

CE5 Is my change here OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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14 Quantum Bifurcations

Quantum Bifurcations, Figure 16
Joint quantum spectrum for problem with bidromy. Quantum
states are given by two numbers (energy, E, and polyad num-
ber, n) which are the eigenvalues of two mutually commuting
operators. Inside the OAB curvilinear triangle two regular lat-
tices are clearly seen. One can be continued smoothly through
theOC boundarywhereas another continues CE4 through the BC
boundary. This means that the regular part of the whole lattice
can be considered as a one self-overlapping regular lattice. The
figure suggests also the possibility to define the propagation of
a double cell along a “bipath” through the singular line BOwhich
leads to splitting of the cell into two elementary cells fusing at
the end into one cell defining in such a way the “bidromy” trans-
formation associated with a bipath. Taken from [70]

furcation diagrams” are possible for a family of integrable829

systems depending on some external parameters? Hamil-830

tonianHopf bifurcation leading to the appearance of a new831

isolated singular value and as a consequence appearance832

of monodromy is just one of the possible effects of this833

kind. Another possibility is the transformation of an iso-834

lated focus-focus singular value into the island associated835

with the presence of a second connected component of the836

inverse image of the EM map. It is also possible that such837

an island is born within the regular region of the EMmap. 838

In such a case naturally the monodromy transformation 839

associated with a closed path surrounding the so-obtained 840

island should be trivial (identity). 841

The boundary of the image of the EM map can also 842

undergo transformation which results in the appearance 843

of the region with two components in the inverse image 844

but, in contrast to the previous example of the appearance 845

of an island, these two components can be smoothly de- 846

formed one onto CE6 another along a continuous path go- 847

ing only through regular values of the EM map. Examples 848

of all such modifications were studied on simple models 849

inspired by concrete quantum molecular systems like the 850

H atom, CO2, LiCN molecules and so on [24,30,40]. 851

Semi-QuantumLimit 852

and Reorganizationof QuantumBands 853

Up to now we have discussed the qualitative modifications 854

of internal structures of certain groups of quantum lev- 855

els which are typically named bands. Their appearance is 856

physically quite clear in the adiabatic approximation. The 857

existence of fast and slow classical motions manifests it- 858

self in quantum mechanics through the formation of so- 859

called energy bands. The big energy difference between en- 860

ergies of different bands correspond to fast classical vari- 861

ables whereas small energy differences between energy lev- 862

els belonging to the same band correspond to classical slow 863

variables. Typical bands in simple quantum systems corre- 864

spond to vibrational structure of different electronic states, 865

rotational structure of different vibrational states, etc. 866

If now we have a quantum problem which shows the 867

presence of bands in its energy spectrum, the natural gen- 868

eralization consists of putting this quantum system in 869

a family, depending on one (or several) control parame- 870

ters. What are the generic qualitative modifications which 871

can be observed within such a family of systems when 872

control parameters vary? Apart from qualitative modifi- 873

cations of the internal structure of individual bands which 874

can be treated as the earlier discussed quantum bifurca- 875

tions, another qualitative phenomenon is possible, namely 876

the redistribution of energy levels between bands or more 877

generally, the reorganization of bands under the variation 878

of some control parameters [8,26,28,62,68]. In fact this 879

phenomenon is very often observed in both the numeri- 880

cal simulations and the real experiments with molecular 881

systems exhibiting bands. A typical example of molecular 882

rovibrational energy levels classified according to their en- 883

ergy and angular momentum is shown in Fig. 17. It is im- 884

portant to note that the number of energy levels in bands 885

before and after their “intersection” changes. 886
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Quantum Bifurcations 15

Quantum Bifurcations, Figure 17
System of rovibrational energy levels of 13CF4 molecule repre-
sented schematically in E, J coordinates. The number of energy
levels in each clearly seen band is 2J C 1 C ı, where ı is a small
integer which remains constant for isolated bands and changes
at band intersections. In the semi-quantum model ı is inter-
preted as the first Chern class, characterizing the non-triviality of
the vector bundle formed by eigenfunctions of the “fast” subsys-
tem over the classical phase space of the “slow” subsystem [27]

The same phenomenon of the redistribution of en-887

ergy levels between energy bands can be understood by888

the example of a much simpler quantum system of two889

coupled angular momenta, say orbital angularmomentum890

and spin in the presence of a magnetic field interacting891

only with spin [62,68].892

H D 1 � �

S
Sz C �

NS
(N � S) ; 0 � � � 1 : (7)893

The Hamiltonian for such a system can be represented in894

the form of a one-parameter family (7) having two natural895

limits corresponding to uncoupled and coupled angular896

momenta. The interpolation of eigenvalues between these897

two limits is shown in Fig. 18 for different values of spin898

quantum number, S D 1/2; 1; 3/2. The quantum number899

of orbital momentum is taken to be N D 4. Although this 900

value is not much larger than the S values, the existence of 901

bands and their reorganization under the variation of the 902

external parameter � is clearly seen in the figure. 903

Although the detailed description of this reorganiza- 904

tion of bands will take us rather far away from the prin- 905

cipal subject it is important to note that in the simplest 906

situations there exists a very close relation between the re- 907

distribution phenomenon and the Hamiltonian Hopf bi- 908

furcations leading to the appearance of Hamiltonianmon- 909

odromy [81]. In the semi-quantum limit when part of the 910

dynamical variables are treated as purely classical and all 911

the rest as quantum, the description of the complete sys- 912

tem naturally leads to a fiber bundle construction [27]. 913

The role of the base space is taken by the classical phase 914

space for classical variables. A set of quantum wave-func- 915

tions associated with one point of the base space forms 916

a complex fiber. As a whole the so-obtained vector bun- 917

dle with complex fibers can be topologically characterized 918

by its rank and Chern classes [56]. Chern classes are re- 919

lated to the number of quantum states in bands formed 920

due to quantum character of the total problem with re- 921

spect to “classical” variables. Modification of the number 922

of states in bands can occur only at band contact and is as- 923

sociated with the modification of Chern classes of the cor- 924

responding fiber bundle [26]. The simplest situation takes 925

place when the number of degrees of freedom associated 926

with classical variables is one. In this case only one topo- 927

logical invariant – the first Chern class is sufficient to char- 928

acterize the non-triviality of the fiber bundle and the dif- 929

ference in Chern classes is equal to the number of energy 930

levels redistributed between corresponding bands. More- 931

over, in the generic situation (in the absence of symmetry) 932

the typical behavior consists of the redistribution of only 933

one energy level between two bands. The generic phenom- 934

ena become more complicated with increasing the num- 935

ber of degrees of freedom for the classical part of vari- 936

ables. The model problem with two slow degrees of free- 937

dom (described in classical limit by the CP2 phase space) 938

and three quantum states was studied in [28]. A new qual- 939

itative phenomenon was found, namely, the modification 940

of the number of bands due to formation of topologically 941

coupled bands. Figure 19 shows the evolution of the sys- 942

tem of energy levels along with the variation of control 943

parameter �. Three quantum bands (at � D 0) transform 944

into two bands (in the � D 1) limit. One of these bands 945

has rank one, i. e. it is associated with one quantum state. 946

Another has rank two. It is associated with two quantum 947

states. Both bands have non-trivial topology (non-trivial 948

Chern classes). Moreover, it is quite important that the 949

newly formed topologically coupled band of rank two can 950
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16 Quantum Bifurcations

Quantum Bifurcations, Figure 18
Rearrangement of energy levels between bands formodel Hamiltonian (7)with two, three, or four states for “fast” variable.Quantum
energy levels are shown by solid lines. Classical energies of stationary points for energy surfaces are shown by dashed lines. Taken
from [68]

Quantum Bifurcations, Figure 19
Rearrangement of three bands into two topologically non-triv-
ially coupled bands. Example of a model with three electronic
states and vibrational structure of polyads formed by three
quasi-degenerate modes. At � D 0 three bands have each the
same number of states, namely 15. In the classical limit each ini-
tial band has rank one and trivial topology. At � D 1 there are
only two bands. One of them has rank 2 and non-trivial first and
second Chern classes. Taken from [28]

be split into two bands of rank one only if a coupling with951

the third band is introduced.952

The corresponding qualitative modifications of quan-953

tum spectra can be considered as natural generalizations954

of quantum bifurcations and probably should be treated as955

topological bifurcations. Thus, the description of possible956

“elementary” rearrangements of energy bands is a direct957

consequence of topological restrictions imposed by a fiber 958

bundle structure of the studied problem. 959

It is interesting to mention here the general mathe- 960

matical problem of finding proper equivalence or better 961

to say correspondence between some construction made 962

over real numbers and their generalizations to complex 963

numbers and quaternions. This paradigm of complexifi- 964

cation and quaternization was discussed by Arnold [4,5] 965

on many different examples. The closest to the present 966

subject is the example of complexification of the Wigner– 967

Neumann non-crossing rule resulting in a quantum Hall 968

effect (in physical terms). In fact, the mathematical basis 969

of the quantum Hall effect is exactly the same fiber bun- 970

dle construction which explains the redistribution of en- 971

ergy levels between bands in the above-mentioned simple 972

quantum mechanical model. 973

Multiple Resonances and Quantum State Density 974

Rearrangement of quantum energy states between bands 975

is presented in the previous section as an example of 976

a generic qualitative phenomenon occurring under vari- 977

ation of a control parameter. One possible realization of 978

bands is the sequence of vibrational polyads formed by 979

a system of resonant vibrational modes indexed by the 980

polyad quantum number. In the classical picture this con- 981

struction corresponds to the system of oscillators reduced 982

with respect to the global action. The reduced classical 983

phase space is in such a case the weighted projective space. 984

In the case of particular 1 : 1 : : : : : 1 resonance the corre- 985

sponding reduced phase space is a normal complex projec- 986
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Quantum Bifurcations 17

tive space CPn . The specific resonance conditions impose987

for a quantum problem specific conditions on the num-988

bers of quantum states in polyads. In the simplest case of989

harmonic oscillators with n1 : n2 : : : : : nk resonance the990

numbers of states in polyads are given by the generating991

function992

g D 1
(1 � tn1 ) (1 � tn2) � � � (1 � tnk )

D
X

N

CN tN ; (8)993

where N is the polyad quantum number. Numbers CN are994

integers for integer N values, but they can be extended to995

arbitrary N values and represented in the form of a quasi-996

polynomial, i.e, a polynomial in N with coefficients being997

a periodic function whose CE7 period equals the least com-998

mon multiplier of ni ; i D 1; : : : ; k. Moreover, the coeffi-999

cients of the polynomial can be expressed in terms of so-1000

called Todd polynomials which indicates the possibility of1001

topological interpretation of such information [52,88].1002

Physical Applications and Generalizations1003

Themost clearly seen physical applications of quantum bi-1004

furcations is the qualitative modification of the rotational1005

multiplet structure under rotational excitation, i. e. under1006

the variation of the absolute value of the angular momen-1007

tum. This is related first of all with the experimental pos-1008

sibility to study high J multiplets (which are quite close1009

to the classical limit but nevertheless manifest their quan-1010

tum structure) and to the possibility to use symmetry ar-1011

guments, which allow one to distinguish clusters of states1012

before and after bifurcation just by counting the number1013

of states in the cluster, which depends on the order of1014

group of stabilizer. Nuclear rotation is another natural ex-1015

ample of quantum rotational bifurcations [60]. Again the1016

interest in corresponding qualitative modifications is due1017

to the fact that rotational bands are extremely well stud-1018

ied up to very high J values. But in contrast to molecu-1019

lar physics examples, in nuclear physics it mostly happens1020

that only ground states (for each value of J) are known.1021

Thus, one speaks more often about qualitative changes of1022

the ground state (in the absence of temperature) named1023

quantum phase transitions [65].1024

Internal structure of vibrational polyads is less evi-1025

dent for experimental verifications of quantum bifurca-1026

tions, but it gives many topologically non-trivial examples1027

of classical phase spaces on which the families of Ham-1028

iltonians depending on parameters are defined [25,30,38,1029

41,44,46,66,76,77,85]. The main difficulty here is the small1030

number of quantum states in polyads accessible to exper-1031

imental observations. But this problem is extremely inter-1032

esting from the point-of-view of extrapolation of theoreti-1033

cal results to the region of higher energy (or higher polyad 1034

quantum numbers) which is responsible as a rule for many 1035

chemical intra-molecular processes. Certain molecules, 1036

like CO2, or acetylene (C2H2) are extremely well studied 1037

and a lot of highly accurate data exist. At the same time 1038

the qualitative understanding of the organization of ex- 1039

cited states even in these molecules is not yet completed 1040

and new qualitative phenomena are just starting to be dis- 1041

covered. 1042

Among other physically interesting systems it is nec- 1043

essary to mention model problems suggested to study the 1044

behavior of Bose condensates or quantum qubits [36,37, 1045

74,82]. These models have a mathematical form which is 1046

quite similar to rotational and vibrational models. At the 1047

same time their physical origin and the interpretation of 1048

results is quite different. This is not an exception. For ex- 1049

ample, the model Hamiltonian corresponding in the clas- 1050

sical limit to a Hamiltonian function defined over S2 classi- 1051

cal phase space is relevant to rotational dynamics, descrip- 1052

tion of internal structure of vibrational polyads formed by 1053

two (quasi)degenerate modes, in particular to so-called lo- 1054

cal-normal mode transition in molecules, interaction of 1055

electromagnetic field with a two-level system, the Lipkin– 1056

Meshkov–Glick model in nuclear physics, entanglement 1057

of qubits, etc. 1058

Future Directions 1059

To date many new qualitative phenomena have been sug- 1060

gested and observed in experimental and numerical stud- 1061

ies due to intensive collaboration betweenmathematicians 1062

working in dynamical system theory, classical mechanics, 1063

complex geometry, topology, etc., and molecular physi- 1064

cists using qualitativemathematical tools to classify behav- 1065

ior of quantum systems and to extrapolate this behavior 1066

from relatively simple (low energy regions) to more com- 1067

plicated ones (high energy regions). Up to now the main 1068

accent was placed on the study of the qualitative features 1069

of isolated time-independent molecular systems. Specific 1070

patterns formed by energy eigenvalues and by common 1071

eigenvalues of several mutually commuting observables 1072

were the principal subject of study. Existence of qualita- 1073

tively different dynamical regimes for time-independent 1074

problems at different values of exact or approximate inte- 1075

grals of motion were clearly demonstrated. Many of these 1076

new qualitative features and phenomena are supposed to 1077

be generic and universal although their rigorous mathe- 1078

matical formulation and description is still absent. 1079

On the other side, the analysis of the time-dependent 1080

processes should be developed. This step is essential in 1081

order to realize at the level of quantum micro-systems 1082

CE7 Is my change here OK?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)



Unc
or

re
cte

d 
Pro

of

20
08

-1
0-

16

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry 146 — 2008/10/16 — 10:08 — page 18 — le-tex
��

�� ��

18 Quantum Bifurcations

the transformations associated with the qualitative mod-1083

ifications of dynamical regimes and to control such time-1084

dependent processes as elementary reactions, information1085

data storage, and so on. From this global perspective the1086

main problem of the future development is to support the1087

adequate mathematical formulation of qualitative meth-1088

ods and to improve our understanding of qualitative mod-1089

ifications occurring in quantummicro-systems in order to1090

use them as real micro-devices.1091
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