Quantum Bifurcations

BORIS ZHILINSKIÍ
Université du Littoral, Dunkerque, France

Article Outline
1 Glossary
2 Definition of the Subject
3 Introduction
4 Simplest Effective Hamiltonians
5 Bifurcations and Symmetry
6 Imperfect Bifurcations
7 Organization of Bifurcations
8 Bifurcation Diagrams for Two Degree-of-Freedom Integrable Systems
9 Bifurcations of “Quantum Bifurcation Diagrams”
10 Semi-Quantum Limit and Reorganization of Quantum Bands
11 Multiple Resonances and Quantum State Density
12 Physical Applications and Generalizations
13 Future Directions
14 Bibliography

Glossary

Classical limit The classical limit is the classical mechanical problem which can be constructed from a given quantum problem by some limiting procedure. During such a construction the classical limiting manifold should be defined which plays the role of classical phase space. As soon as quantum mechanics is more general than classical mechanics, going to the classical limit from a quantum problem is much more reasonable than discussing possible quantizations of classical theories [73,86].

Energy-momentum map In classical mechanics for any problem which allows the existence of several integrals of motion (typically energy and other integrals often named as momenta) the Energy-Momentum (EM) map gives the correspondence between the phase space of the initial problem and the space of values of all independent integrals of motion. The energy-momentum map introduces the natural foliation of the classical phase space into common levels of values of energy and momenta [13,34]. The image of the EM map is the region of the space of possible values of integrals of motion which includes regular and critical values. The quantum analog of the image of the energy-momentum map is the joint spectrum of mutually commuting quantum observables.

Joint spectrum For each quantum problem a maximal set of mutually commuting observables can be introduced [16]. A set of quantum wave functions which are mutual eigenfunctions of all these operators exists. Each such eigenfunction is characterized by eigenvalues of all mutually commuting operators. The representation of mutual eigenvalues of n commuting operators in the n-dimensional space gives the geometrical visualization of the joint spectrum.

Monodromy In general, the monodromy characterizes the evolution of some object after it makes a close path around something. In classical Hamiltonian dynamics the Hamiltonian monodromy describes for completely integrable systems the evolution of the first homology group of the regular fiber of the energy-momentum map after a close path in the regular part of the base space [13]. For a corresponding quantum problem the quantum monodromy describes the modification of the local structure of the joint spectrum after its propagation along a close path going through a regular region of the lattice.

Quantum bifurcation Qualitative modification of the joint spectrum of the mutually commuting observables under the variation of some external (or internal) parameters and associated in the classical limit with the classical bifurcation is named quantum bifurcation [59]. In other words the quantum bifurcation is the manifestation of the classical bifurcation presented in the classical dynamic system in the quantum version of the same system.

Quantum-classical correspondence Starting from any quantum problem the natural question consists of defining the corresponding classical limit, i.e. the classical dynamic variables forming the classical phase space and the associated symplectic structure. Whereas in simplest quantum problems defined in terms of standard position and momentum operators with commutation relation \([q_i, p_j] = i\hbar \delta_{ij}\), \([q_i, q_j]\) \([p_i, p_j] = 0 (i, j = 1 \ldots n)\) the classical limit phase space is the 2n-dimensional Euclidean space with standard symplectic structure on it, the topology of the classical limit manifold in many other important for physical applications cases can be rather non-trivial [73,86].

Quantum phase transition Qualitative modifications of the ground state of a quantum system occurring under the variation of some external parameters at zero temperature are named quantum phase transitions [65]. For finite particle systems the quantum phase transition can be considered as a quantum bifurcation [60].
Quantum Bifurcations

Spontaneous symmetry breaking
Qualitative modification of the system of quantum states caused by perturbation which has the same symmetry as the initial problem. Local symmetry of solutions decreases but the number of solutions increases. In the energy spectra of finite particle systems the spontaneous symmetry breaking produces an increase of the "quasidegeneracy", i.e. formation of clusters of quasi-degenerate levels whose multiplicity can be much higher than the dimension of the irreducible representations of the global symmetry group [51].

Symmetry breaking
Qualitative changes in the properties (dynamical behavior, and in particular in the joint spectrum) of quantum systems which are due to modifications of the global symmetry of the problem caused by external (less symmetrical than original problem) perturbation can be described as symmetry breaking effects. Typical effects consist of splitting of degenerate energy levels classified initially according to irreducible representation of the initial symmetry group into less degenerate groups classified according to irreducible representation of the subgroup (the symmetry group of the perturbation) [47].

Definition of the Subject
Quantum bifurcations (QB) are qualitative phenomena occurring in quantum systems under the variation of some internal or external parameters. In order to make this definition a little more precise we add the additional requirement: The qualitative modification of the "behavior" of a quantum system can be described as QB if it consists of the manifestation for the quantum system of the classical bifurcation presented in classical dynamic systems which is the classical analog of the initial quantum system. Quantum bifurcations are typical elementary steps leading from the simplest in some way effective Hamiltonian to more complicated ones under the variation of external or internal parameters. As internal parameters one may consider the values of exact or approximate integrals of motion. The construction of an effective Hamiltonian is typically based on the averaging and/or reduction procedure which results in the appearance of "good" quantum numbers (or approximate integrals of motion). The role of external parameters can be played by forces of external champs, phenomenological constants in the effective Hamiltonians, particle masses, etc. In order to limit the very broad field of qualitative changes and of possible quantum bifurcations in particular, we restrict ourselves mainly to quantum systems whose classical limit is associated with compact phase space and is nearly integrable. This means that for quantum problems the set of mutually commuting observables can be constructed within a reasonable physical approximation almost everywhere at least locally.

Quantum bifurcations are supposed to be universal phenomena which appear in generic families of quantum systems and explain how relatively simple behavior becomes complicated under the variation of some physical parameters. To know these elementary bricks responsible for increasing complexity of quantum systems under control parameter modifications is extremely important in order to make the extrapolation to regimes unaccessible to experimental study.

Introduction
In order to better understand the manifestations of quantum bifurcations and their significance for concrete physical systems we start with the description of several simple model physical problems which exhibit in some sense the simplest (but nevertheless) generic behavior. Let us start with the harmonic oscillator. A one-dimensional harmonic oscillator has an equidistant system of eigenvalues. All eigenvalues can be labeled by consecutive integer quantum numbers which have the natural interpretation in terms of the number of zeros of eigenfunctions. The classical limit manifold (classical phase space) is a standard Euclidean 2-dimensional space with natural variables \(p, q \). The classical Hamiltonian for the harmonic oscillator is an example of a Morse-type function which has only one stationary point \(p = q = 0 \) and all non-zero energy levels of the Hamiltonian are topological circles. If now we deform slightly the Hamiltonian in such a way that its classical phase portrait remains topologically the same, the spectrum of the quantum problem changes but it can be globally described as a regular sequence of states numbered consecutively by one integer and such description remains valid for any mass parameter value. Note, that for this problem increasing mass means increasing quantum state density and approaching classical behavior (classical limit).

More serious modification of the harmonic oscillator can lead, for example, to creation of new stationary points of the Hamiltonian. In classical theory this phenomenon is known as fold bifurcation or fold catastrophe [3,31]. The phase portrait of the classical problem changes qualitatively. As a function of energy the constant level set of the Hamiltonian has only one stationary point. The classical structure (one circle, two circles, figure eight, circle and a point, or simply point). The quantum version of the same problem shows the existence of three different sequences...
Quantum Bifurcations, Figure 1

Classical and quantum bifurcations for a one degree-of-freedom system. Situations before (a,b,e) and after (c,d,f) the bifurcation are shown. a Energy map for harmonic oscillator-type system. Inverse images of each point are indicated. b Quantum state lattice for harmonic oscillator-type system. c Energy map after the bifurcation. Inverse images of each point are indicated. d Quantum state lattice after bifurcation represented as composed of three regular parts glued together. e Phase portrait for harmonic oscillator-type system. Inverse images are \(S^1 \) (generic inverse image) and \(S^0 \) (inverse image for minimal energy value). f Phase portrait after bifurcation

of states which become clearly visible in the limit of the high density of states which can be reached by increasing the mass value parameter [42]. Such qualitative modification of the energy spectrum of the 1D-quantum Hamiltonian gives the simplest example of the phenomenon which can be described as a quantum bifurcation. Figure 1 shows a schematic representation of quantum bifurcations for a model system with one degree-of-freedom in parallel in quantum and classical mechanics.

After looking for one simple example we can formulate a more general question which concerns the appearance in more general quantum systems of qualitative phenomena which can be characterized as quantum bifurcations.

Simplest Effective Hamiltonians

We turn now to several models which describe some specific classes of relatively simple real physical quantum systems formed by a finite number of particles (atoms, molecules, ...). Spectra of such quantum objects are studied nowadays with very high accuracy and this allows us to compare the behavior predicted by quantum bifurcations with the precise information about energy level structure found, for example, from high-resolution molecular spectroscopy.

Typically, the intra-molecular dynamics can be split into electronic, vibrational, and rotational ones due to important differences in characteristic energy excitations or in time scales. The most classical is the rotational motion and probably due to that the quantum bifurcations as a counterpart to classical bifurcations were first studied for purely rotational problems [59,61].

Effective rotational Hamiltonians describe the internal structure of rotational multiplets formed by isolated finite particle systems (atoms, molecules, nuclei) [35]. For many molecular systems in the ground electronic state any electronic and vibrational excitations are much more energy consuming as compared with rotational excitations. Thus, to study the molecular rotation the simplest physical assumption is to suppose that all electronic and all vibrational degrees-of-freedom are frozen. This means that a set of quantum numbers is given which have the sense of approximate integrals of motion specifying the character of vibrational and electronic motions in terms of these “good” quantum numbers. At the same time for a free molecule in the absence of any external fields due to isotropy of the space the total angular momentum \(J \) and its projection \(J_z \) on the laboratory fixed frame are strict integrals of motion. Consequently, to describe the rotational motion for fixed values of \(J \) and \(J_z \) it is sufficient to analyze the effective problem with only one degree-of-freedom. The dimension of classical phase space in this case equals two and the two classical conjugate variables are: the projection of the total angular momentum on the body fixed frame and conjugate angle variable. The classical phase space is topologically a two-dimensional sphere, \(S^2 \). There is a one-to-one correspondence between the points on a sphere and the orientation of the angular momentum in the body-fixed frame. Such a representation gives a clear visualization of a classical rotational Hamiltonian as a function defined over a sphere [35,49].

In quantum mechanics the rotation of molecules is traditionally described in terms of an effective rotational Hamiltonian which is constructed as a series in rotational operators \(J_x, J_y, J_z \), the components of the total angular momentum \(J \). In a suitably chosen molecular fixed frame the effective Hamiltonian has the form

\[
H_{\text{eff}} = A J_x^2 + B J_y^2 + C J_z^2 + \sum_{a=1}^{n} \epsilon_{a} J_x J_y J_z + \cdots, \tag{1}
\]

where \(A, B, C \) and \(\epsilon_{a} \) are constants. To relate quantum and classical pictures we note that \(J^2 \) and energy are integrals of Euler’s equations of motion for dynamic variables \(J_x, J_y, J_z \). The phase space of the classical rotational problem with constant \(|J| \) is \(S^2 \), the two-dimensional sphere, and it can be parametrized with spherical
angles \((\theta, \phi)\) in such a way that the points on \(S^2\) define the orientation of \(J\), i.e., the position of the axis and the direction of rotation. To get the classical interpretation of the quantum Hamiltonian we introduce the classical analogs of the operators \(J_x, J_y, J_z\):

\[
J \mapsto \left(\begin{array}{c} J_x \\ J_y \\ J_z \end{array} \right) = \left(\begin{array}{c} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{array} \right) \sqrt{J(J + 1)} \quad (2)
\]

and consider the rotational energy as a function of the dynamical variables \((\theta, \phi)\) and the parameter \(J\).

Thus, for an effective rotational Hamiltonian the corresponding classical symbol is a function \(E_J(\theta, \phi)\) defined over \(S^2\) and named usually the rotational energy surface [35].

Taking into account the symmetry imposed by the initial problem and the topology of the phase space the simplest rotational Hamiltonian can be constructed. In classical mechanics the simplest Hamiltonian can be defined (using Morse theory [55,88]) as a Hamiltonian function with the minimal possible number of non-degenerate stationary points compatible with the symmetry group action of the classical phase space. Morse theory in the presence of symmetry (or equivariant Morse theory) implies important restrictions on the number of minima, maxima, and saddle points. In the absence of symmetry the simplest Morse type function on the \(S^2\) phase space has one minimum and one maximum, as a consequence of Morse inequalities. In the presence of non-trivial symmetry group action the minimal number of stationary points on the sphere increases. For example, many asymmetric top molecules (possessing three different moment of inertia of the equilibrium configuration) have \(D_{2h}\) symmetry group [47]. This group includes rotations over \(\pi\) around \(\{x, y, z\}\) axes, reflections in \(\{xy, yz, zx\}\) planes and inversion as symmetry operations. Any \(D_{2h}\) invariant function on the sphere has at least six stationary points (two equivalent minima, two equivalent maxima, and two equivalent saddle points). This means that in quantum mechanics the asymmetric top has eigenvalues which form two regular sequences of quasi-degenerate doublets with the transition region between them. The correspondence between the quantum spectrum and the structure of the energy map for the classical problem is shown in Fig. 2.

As soon as the simplest classical Hamiltonian is characterized by the appropriate system of stationary points the whole region of possible classical energy values (in the case of dynamical systems with only one degree-of-freedom the energy-momentum map becomes simply the energy map) appears to be split into different regions corresponding to different dynamical regimes, i.e., to different regions of the phase portrait foliated by topologically non-equivalent systems of classical trajectories. Accordingly, the energy spectrum of the corresponding quantum Hamiltonian can be qualitatively described as formed by regular sequences of states within each region of the classical energy map.

Quantum bifurcations are universal phenomena which lead to a new organization of the energy spectrum into qualitatively different regions in accordance with corresponding qualitative modifications of the classical energy-momentum map under the variation of some control parameter.
Simplest Hamiltonians for Two Degree-of-Freedom Systems

When the quantum system has two or larger number of degrees-of-freedom the simplest dynamical regimes often correspond in classical mechanics to a quasi-regular dynamics which can be reasonably well approximated by an integrable model. The integrable model in classical mechanics can be constructed by normalizing the Hamiltonian and by passing to so-called normal forms [2,49]. The quantum counterpart of normalization is the construction of a mutually commuting set of operators which should not be mistaken with quantization of systems in normal form. Corresponding eigenvalues can be used as "good" quantum numbers to label quantum states. A joint spectrum of mutually commuting operators corresponds to the image of the energy-momentum map. For Hamiltonian systems the inverse images of the regular values are regular tori (one or several) [2]. A lot of different singularities are possible. In classical mechanics different levels of the classifications are studied in detail [7]. The diagram which represents the image of the classical EM map together with its stratification into regular and critical values is named the bifurcation diagram. The origin of such a name is due to the fact that the values of integrals of motion can be considered as control parameters for the phase portraits (inverse images of the EM map) of the reduced systems.

For quantum problems the analog of the classical stratification of the EM map for integrable systems is the splitting of the joint spectrum of several commuting observables into regions formed by regular lattices of joint eigenvalues. Any locally simply connected neighborhood of a regular point of the lattice can be deformed into part of the regular \mathbb{Z}^n lattice of integers. This means that local quantum numbers can be consistently introduced to label states of the joint spectrum. If the regular region is not simply connected it still can be characterized locally by a set of "good" quantum numbers. At the same time this is impossible globally. Likewise in classical mechanics the Hamiltonian monodromy is the simplest obstruction to the existence of the global action-angle variables [17,57], in quantum mechanics the analog notion of quantum monodromy [14,33,68,80] characterizes the global non-triviality of the regular part of the lattice of joint eigenvalues. Figure 3 demonstrates the effect of the presence of a classical singularity (isolated focus-focus point) on the global properties of the quantum lattice formed by joint eigenvalues of two commuting operators for a simple problem with two degrees-of-freedom, which is essentially the $1 : (-1)$ resonant oscillator [58]. Two integrals of motions in this example are chosen as

$$f_1 = \frac{1}{2} (p_1^2 + q_1^2) - \frac{1}{2} (p_2^2 + q_2^2).$$

$$f_2 = p_1 q_2 + p_2 q_1 + \frac{1}{4} (p_1^2 + q_1^2 + p_2^2 + q_2^2).$$

Locally in any simply connected region which does not include the classical singularity of the EM map situated at $f_1 = f_2 = 0$, the joint spectrum can be smoothly deformed to the regular \mathbb{Z}^2 lattice [58,89]. Such lattices are shown, for example, in Fig. 4. If somebody wants to use only one chart to label states, it is necessary to take care in respect of the multivaluedness of such a representation. There are two possibilities:

(i) One makes a cut and maps the quantum lattice to a regular \mathbb{Z}^2 lattice with an appropriate solid angle removed from it (see Fig. 5 [58,68,89]). Points on the boundary of such a cut should be identified and a special matching rule explaining how to cross the path should be introduced. Similar constructions are quite popular in solid state physics in order to represent defects of lattices, like dislocations, disclinations, etc. We just note that the "monodromy defect" introduced...
Quantum Bifurcations, Figure 4
Two chart atlas which covers the quantum lattice of the \(1 : (-1) \) resonant oscillator system represented in Fig. 3. Top plots show the choice of basis cells and the gluing map between the charts. Bottom plots show the transport of the elementary cell (dark gray quadrangles) in each chart. Central bottom panel shows close path \(I^* \) and its quantum realization (black dots) leading to non-trivial monodromy (compare with Fig. 3). Taken from [58]

Quantum Bifurcations, Figure 5
Construction of the \(1 : (-1) \) lattice defect starting from the regular \(\mathbb{Z}^2 \) lattice. The solid angle is removed from the regular \(\mathbb{Z}^2 \) lattice and points on the so-obtained boundary are identified by vertical shifting. Dark gray quadrangles show the evolution of an elementary lattice cell along a closed path around the defect point. Taken from [58]

Bifurcations and Symmetry
The general mathematical answer about the possible qualitative modifications of a system of stationary points of functions depending on some control parameters can be found in bifurcation (or catastrophe) theory [3,31,32]. It is important that the answer depends on the number of control parameters and on the symmetry. Very simple classification of possible typical bifurcations of stationary points of a one-parameter family of functions under presence of symmetry can be formulated for dynamical systems with one degree-of-freedom. The situation is particularly simple because the phase space is two-dimensional and the complete list of local symmetry groups (which are
Quantum Bifurcations, Figure 6

Representation of the quantum joint spectrum for the "Mexican hat" potential $V(r) = ar^4 - br^2$ with the "cut" along the eigen-ray. For such a cut the left and the right limits at the cut give the same values of actions (good quantum numbers) but the lines of constant values of actions exhibit a "kink" at the cut (the discontinuity of the first derivative).

The list of possible bifurcations includes:

1. C_1^\pm: A non-symmetrical non-local bifurcation resulting in the appearance ($+$) or disappearance ($-$) of a stable-unstable pair of stationary points with the trivial local symmetry C_1. In the quantum problem this bifurcation is associated with the appearance or disappearance of a new regular sequence of states glued at its end with the intermediate part of another regular sequence of quantum states [42,77].

2. C_2^\pm: A local bifurcation with the broken C_2 local symmetry. This bifurcation results either in appearance of a triple of points (two equivalent stable points with C_1 local symmetry and one unstable point with C_2 local symmetry) instead of one stable point with C_2 symmetry, or in inverse transformation. The number of stationary points in this bifurcation increases or decreases by two. For the quantum problem the result is the transformation of a local part of a regular sequence of states into one sequence of quasi-degenerate doublets.

$C_2^{N\pm}$: A non-local bifurcation with the broken C_2 local symmetry. This bifurcation results in appearance ($+$) or disappearance ($-$) of two new unstable points with broken C_2 symmetry and simultaneous transformation of the initially stable (for $+$) or unstable (for $-$) stationary point into an unstable/stable one. The number of stationary points in this bifurcation increases or decreases by two. For the quantum problem this means the appearance of a new regular sequence of states near the separatrix between two different regular regions.

C_n^N ($n \geq 4$): A non-local bifurcation corresponding to passage of n unstable stationary points through a stable stationary point with C_n local symmetry which is accompanied with the minimum \leftrightarrow maximum change for a stable point with the C_n local symmetry. The number of stationary points remains the same. For the quantum problem this bifurcation corresponds to transformation of the increased sequence of energy levels into a decreased sequence.

$C_n^{N\pm}$ ($n \geq 4$): A local bifurcation which results in appearance ($+$) or disappearance ($-$) of n stable and n unstable stationary points with the broken C_n symmetry and simultaneous minimum \leftrightarrow maximum change of a stable point with the C_n local symmetry. The number of stationary points increases or decreases by $2n$. In the quantum problem after bifurcation a new sequence of n-times quasi-degenerate levels appears/disappears.

Universal quantum Hamiltonians which describe the qualitative modification of the quantum energy level system around the bifurcation point are given in [59,61].

The presence of symmetry makes it much easier to observe the manifestation of quantum bifurcations. Modification of the local symmetry of stable stationary points results in the modification of the cluster structure of energy levels, i.e. the number and the symmetry types of energy level forming quasi-degenerate groups of levels. This phenomenon is essentially the spontaneous breaking of symmetry [51]. Several concrete molecular systems which show the presence of quantum bifurcations in rotational structure under rotational excitation are cited in Table 2. Many other examples can be found in [9,23,59,67,71,87,88,91,92] and references therein. In purely vibrational problems breaking dynamical $SU(N)$ symmetry of the isotope harmonic oscillator till finite
Quantum Bifurcations, Table 1
Bifurcations in the presence of symmetry. Solid lines denote stable stationary points. Dashed lines denote unstable stationary points. Numbers in parenthesis indicate the multiplicity of stationary points.

![Diagram of bifurcations](image)

Quantum Bifurcations, Table 2
Molecular examples of quantum bifurcations in the rotational structure of individual vibrational components under the variation of the absolute value of angular momentum, \(J, J_c \) is the critical value corresponding to bifurcation

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Component</th>
<th>(J_c)</th>
<th>Bifurcation type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiH₄</td>
<td>(\nu_2(+))</td>
<td>12</td>
<td>(C_{2}^N)</td>
</tr>
<tr>
<td>SnH₄</td>
<td>(\nu_2(-))</td>
<td>10</td>
<td>(C_{2}^{N,2}), (C_{2}^{N,4}), (C_{2}^{N,6})</td>
</tr>
<tr>
<td>CF₄</td>
<td>(\nu_2(+))</td>
<td>50</td>
<td>(C_{4}^{N})</td>
</tr>
<tr>
<td>H₂Se</td>
<td>(0)</td>
<td>20</td>
<td>(C_{2}^{N})</td>
</tr>
</tbody>
</table>

Symmetry group results in formation of so-called non-linear normal modes \([23,54]\) or quasimodes \([1]\), or local modes \([9,25,38,39,43,46,48]\). In the case of two degrees-of-freedom the analysis of the vibrational problem can be reduced to the analysis of the problem similar to the rotational one \([35,66]\) and all the results about possible types of bifurcations found for rotational problems remain valid in the case of intra-molecular vibrational dynamics.

Imperfect Bifurcations
According to general results the possible types of bifurcations which are generically present (and persist under small deformations) in a family of dynamical systems strictly depend on the number of control parameters. In the absence of symmetry only one bifurcation of stationary points is present for a one-parameter family of Morse-type functions, namely the formation (annihilation) of two new stationary points. This corresponds to saddle-node bifurcation for one degree-of-freedom Hamiltonian systems. The presence of symmetry increases significantly the number of possible bifurcations even for families with only one parameter \([31,32]\). From the physical point-of-view it is quite natural to study the effect of symmetry breaking on the symmetry allowed bifurcation. Decreasing symmetry naturally results in the modification of the allowed types of bifurcations but at the same time it is quite clear that at sufficient slight symmetry breaking perturbation the resulting behavior of the system should be rather close to the behavior of the original system with higher symmetry.

In the case of a small violation of symmetry the so-called “imperfect bifurcations” can be observed. Imperfect bifurcations, which are well known in the classical theory of bifurcations \([32]\) consist of the appearance of stationary points in the neighborhood of another stationary point which does not change its stability. In some way one can say that imperfect bifurcation mimics generic bifurcation in the presence of higher symmetry by the special organization of several bifurcations which are generic in the presence of lower symmetry. Naturally quantum bifurcations follow the same behavior under the symmetry breaking as classical ones. Very simple and quite natural examples of imperfect quantum bifurcations were demonstrated on the example of the rotational structure modifications under increasing angular momentum \([90]\). The idea of appearance of imperfect bifurcations is as follows. Let us suppose that some symmetrical molecule demonstrates under the variation of angular momentum a quantum rotational bifurcation allowed by symmetry. The origin of this bifurcation is due, say, to centrifugal distortion effects which depend strongly on \(J \) but are not very sensitive to small variation of masses even in the case of symmetry breaking isotopic substitution. In such a case a slight modification of the masses of one or several equivalent atoms breaks the symmetry and this symmetry violation can be made very weak due to the small ratio \(\Delta M/M \) under isotope substitution. In classical theory the effect of symmetry breaking can be easily seen through the variation of the position of stationary points with control parameter. For example, instead of a pitchfork bifurcation which is typical for \(C_2 \) local symmetry, we get for the unsymmetrical problem (after slight breaking of \(C_2 \) symmetry) a smooth evolution of the position of one stationary point and the appearance of two new stationary points in fold catastrophe (see Fig. 7). In associated quantum bifurcations the most important effect is the splitting of clusters. But one should be careful with this interpretation because in quantum mechanics of finite particle systems the clusters are always split.
due to quantum mechanical tunneling between different equivalent regions of localization of quantum wave functions. Intercluster splitting increases rapidly approaching the region of classical separatrix. The behavior of quantum tunneling was studied extensively in relation to the quantum breathers problem [6,29]. Systematic application of quasi-classical methods to reproduce quantum energy level structure near the singularities of the energy-momentum maps where exponentially small corrections are important is possible but requires special efforts (see for example [12]) and we will not touch upon this problem here.

Organization of Bifurcations

The analysis of the quantum bifurcations in concrete examples of rotating molecules have shown that in some cases the molecule undergoes several consecutive qualitative changes which can be interpreted as a sequence of bifurcations which sometimes cannot even be separated into elementary bifurcations for the real scale of the control parameter [88]. One can imagine in principle that successive bifurcations lead to quantum chaos in analogy with classical dynamical systems where the typical scenario for the transition to chaos is through a sequence of bifurcations. Otherwise, the molecular examples were described with effective Hamiltonians depending only on one degree-of-freedom and the result of the sequence of bifurcations was just the crossover of the rotational multiplets [64]. In some sense such a sequence of bifurcations can be interpreted as an imperfect bifurcation assuming initially higher dynamical symmetry, like the continuous SO(3) group.

Later, a similar crossover phenomenon was found in a quite different quantum problem, like the hydrogen atom in external fields [24,53,72]. The general idea of such organization of bifurcations is based on the existence of two different limiting cases of dynamical regimes for the same physical quantum system (often under presence of the same symmetry group) which are qualitatively different. For example, the number of stationary points, or their stability differs. If \(H_1 \) and \(H_2 \) are two corresponding effective Hamiltonians, the natural question is: Is it possible to transform \(H_1 \) into \(H_2 \) by a generic perturbation depending on only one parameter? And if so, what is the minimal number of bifurcations to go through?

The simplest quantum system for which such a question becomes extremely natural is the hydrogen atom in the presence of external static electric (\(F \)) and magnetic (\(G \)) fields. Two natural limits – the Stark effect in the electric field and Zeeman effect in the magnetic field – show quite different qualitative structure even in the extremely low field limit [15,20,63,72,78]. Keeping a small field one can go from one (Stark) limit to another (Zeeman) and this transformation naturally goes through qualitatively different regimes [24,53]. In spite of the fact that the hydrogen atom (even without spin and relativistic corrections) is only a three degree-of-freedom system, the complete description of qualitatively different regimes in a small field limit is still not done and remains an open problem [24].

An example of clearly seen qualitative modifications of the quantum energy level system of the hydrogen atom under the variation of \(F/G \) ratio of the strengths of two parallel electric and magnetic fields is shown in Fig. 8. The calculations are done for a two degree-of-freedom system after the normalization with respect to the global action. In quantum mechanics language this means that only energy levels which belong to the same \(n \)-shell of the hydrogen atom are treated and the interaction with other \(n' \) shells is taken into account only effectively. The limiting classical phase space for this effective problem is the four-dimensional space \(S^2 \times S^2 \), which is the direct product of two two-dimensional spheres. In the presence of axial symmetry this problem is completely integrable and the Hamiltonian and the angular momentum provide a complete set of mutually commuting operators. Energies of stationary points of classical Hamiltonian limit are shown on the same Fig. 8 along with quantum levels. When one of the characteristic frequencies goes through zero, the so-called collapse phenomena occurs. Some other non-trivial resonance relations between two frequencies are also indicated. These resonances correspond to special organization of quantum energy levels. At the same time it is not necessary here to go to joint spectrum representation in order to see the reorganization of stationary points of the Hamiltonian function on \(S^2 \times S^2 \) phase space under the variation of the external control parameter \(F/G \).

Bifurcation Diagrams for Two Degree-of-Freedom Integrable Systems

Let us consider now the two degree-of-freedom integrable system with compact phase space as a bit more complex but still reasonably simple problem. Many examples of such systems possess EM maps with the stratification of the image formed by the regular part surrounded by the singular boundary. The most naturally arising examples of classical phase spaces, like \(S^2 \times S^2 \), \(CP^2 \), are of that type. All internal points on the image of the EM map are regular in these cases. In practice, real physical problems, even
Quantum Bifurcations, Figure 7

Imperfect bifurcations. a Position x of stationary points as a function of control parameter λ during a pitchfork bifurcation in the presence of C_2 local symmetry. b Modifications induced by small symmetry perturbation of lower symmetry. Solid line: Stable stationary points. Dashed lines: Unstable stationary points.

Quantum Bifurcations, Figure 8

Reorganization of the internal structure of the n-multiplet of the hydrogen atom in small parallel electric and magnetic fields. Energies of stationary points of the classical Hamiltonian (red solid lines) are shown together with quantum energy levels (blue solid lines). The figure is done for $n = 10$ (there are $n^2 = 100$ energy levels forming this multiplet). As the ratio F/G of electric F and magnetic G fields varies this two degree-of-freedom system goes through different zones associated with special resonance relations between two characteristic frequencies (shown by vertical dashed lines). Taken from [24].

Quantum Bifurcations, Figure 9

Typical images of the energy momentum map for completely integrable Hamiltonian systems with two degrees-of-freedom in the case of: a integer monodromy, b fractional monodromy, c non-local monodromy, and d bidromy. Values in the light shaded area lift to single 2-tori; values in the dark shaded area lift to two 2-tori. Taken from [69].

After necessary simplifications and approximations lead to more complicated models. Some examples of fragments of images of the EM map with internal singular points are shown in Fig. 9. In classical mechanics the inverse images of critical values are singular tori of different kinds. Some of them are represented in Fig. 10. Inverse images of critical points situated on the boundary of the EM image have lower dimension. They can be one-dimensional tori (S^1-circles), or zero-dimensional (points).

The natural question now is to describe typical generic modifications of the Hamiltonian which lead to qualitative modifications of the EM map image in classical mechanics and to associated modifications of the joint spectrum in quantum mechanics.

The simplest classical bifurcation leading to modification of the image of the EM map is the Hamiltonian Hopf bifurcation [79]. It is associated with the following modification of the image of the EM map. The critical value of the EM map situated on the boundary leaves the boundary and enters an internal domain of regular values (see Fig. 11). As a consequence, the toric fibration over the closed path surrounding an isolated singularity is non-trivial. Its non-triviality can be characterized by the Ham-
Quantum Bifurcations, Figure 10
Two-dimensional singular fibers in the case of integrable Hamiltonian systems with two degrees-of-freedom (left to right): singular torus, bitorus, pinched and curled tori. Singular torus corresponds to critical values in Fig. 9c, d (ends of bitorus line). Bitorus corresponds to critical values in Fig. 9c, d, which belong to singular line (fusion of two components). Pinched torus corresponds to isolated focus-focus singularity in Fig. 9a. Curled torus is associated with critical values at singular line in Fig. 9b (fractional monodromy). Taken from [69].

Quantum Bifurcations, Figure 11
Qualitative modification of the image of the EM map due to Hamiltonian Hopf bifurcation. Left: Simplest integrable toric fibration over $S^2 \times S^2$ classical phase space. A, B, C, D: Critical values corresponding to singular S^2 fibers. Regular points on the boundary correspond to S^1 fibers. Regular internal points: Regular T^2 fibers. Right: Appearance of an isolated critical value inside the field of regular values. Critical value B corresponds to pinched torus shown in Fig. 10.

Hamiltonian monodromy which describes the mapping from the fundamental group of the base space into the first homology group of the regular fiber [18]. A typical pattern of the joint spectrum around such a classical singularity is shown in Fig. 3. The joint spectrum manifests the presence of quantum monodromy. Its interpretation in terms of regular lattices is given in Figs. 4 and 5.

Taking into account additional terms of higher order it is possible to distinguish different types of Hamiltonian Hopf bifurcations usually named as subcritical and supercritical [19,79]. New qualitative modification, for example, corresponds to transformation of an isolated singular value of the EM map into an “island”, i.e. the region of the EM image filled by points whose inverse images consist of two connected components. Integrable approximation for vibrational motion in the LiCN molecule shows the presence of such an island associated with the non-local quantum monodromy (see Fig. 12) [40]. The monodromy naturally coincides with the quantum monodromy of isolated focus-focus singularity which deforms continuously into the island monodromy. It is interesting to note that in molecule HCN which is rather similar to LiCN, the region with two components in the inverse image of the EM map exists also but the monodromy cannot be defined due to impossibility to go around the island [22].

In the quantum problem the presence of “standard” quantum monodromy in the joint spectrum of two mutually commuting observables can be seen through the mapping of a locally regular part of the joint spectrum lattice to an idealized Z^2 lattice. Existence of local actions for the classical problem which are defined almost everywhere and the multivaluedness of global actions from one side and the quantum-classical correspondence from another side allow the interpretation of the joint spectrum with quantum monodromy as a regular lattice with an isolated defect.

Recently, the generalization of the notion of quantum (and classical) monodromy was suggested [21,58]. For quantum problems the idea is based on the possibility to study instead of the complete lattice formed by the joint spectrum only a sub-lattice of finite index. Such a transformation allows one to eliminate certain “weak line singularities” presented in the image of the EM map. The resulting monodromy is named “fractional monodromy” because for the elementary cell in the regular region the formal transformation after a propagation along a close path crossing “weak line singularities” turns out to be represented in a form of a matrix with fractional coefficients.

An example of quantum fractional monodromy can be given with a $1 : (-2)$ resonant oscillator system possessing two integrals of motion f_1, f_2 in involution:

$$f_1 = \frac{\omega_1}{2} (p_1^2 + q_1^2) - \frac{2\omega_2}{2} (p_2^2 + q_2^2) + R_1(q, p).$$ (5)
Quantum Bifurcations, Figure 12
Quantum joint spectrum for the quantum model problem with two degrees-of-freedom describing two vibrations in the LiCN molecule. The non-local quantum monodromy is shown by the evolution of the elementary cell of the quantum lattice around the singular line associated with gluing of two regular lattices corresponding in molecular language to two different isomers, LiCN and LiNC. Classical limit (left) shows the possible deformation of isolated focus-focus singularity for pendulum to non-local island singularity. In contrast to LiCN, the HCN model has an infinite island which cannot be surrounded by a close path. Taken from [40].

\[f_2 = \text{Im} \left((q_1 + ip_1)^2(q_2 + ip_2) \right) + R_2(q, p) \]

The corresponding joint spectrum for the quantum problem is shown in Fig. 13. It can be represented as a regular \(\mathbb{Z}^2 \) lattice with a solid angle removed (see Fig. 14). The main difference with the standard integer monodromy representation is due to the fact that even after gluing two sides of the cut we get the one-dimensional singular stratum which can be neglected only after going to a sub-lattice (to a sub-lattice of index 2 for 1:2 fractional singularity).

Another kind of generalization of the monodromy notion is related to the appearance of multi-component inverse images for the EM maps. We have already mentioned such a possibility with the appearance of non-local monodromy and Hamiltonian Hopf bifurcations (see Fig. 12). But in this case two components of the inverse image belong to different regular domains and cannot be joined by a path going only through regular values. Another possibility is suggested in [69,70] and is explained schematically in Fig. 15. This figure shows that the arrangement of fibers can be done in such a way that one connected component can be deformed into another connected component along a path which goes only through regular tori. The existence of a quantum joint spectrum corresponding to such a classical picture was demonstrated on the example of a very well-known model problem with three degrees-of-freedom: Three resonant oscillators with 1:1:2 resonance, axial symmetry and with small detuning between double degenerate and non-degenerate modes [30,70]. The specific behavior of the joint spectrum for this model can be characterized as self-overlapping of a regular lattice. The possibility to propagate the initially chosen cell through a regular lattice from the region of self-overlapping back to the same region but to another component was named "bidromy". More complicated construction for the same problem allows us to introduce the "bipath" notion. The bipath starts at a regular point of the EM image and crosses the singular line by splitting itself into two components. Each component belongs to its proper lattice in the self-overlapping region. Two components of the path can go back through the regular region only and fuse together. The behavior of quantum cells along a bipath is shown in Fig. 16. Providing a rigorous mathematical description of such a construction is still an open problem. Although the original problem has three degrees-of-freedom, it is possible to construct a model system with two degrees-of-freedom and with similar properties.
Quantum Bifurcations, Figure 13
Joint quantum spectrum for two-dimensional non-linear \(1 : (-2)\) resonant oscillator (5). The singular line is formed by critical values whose inverse images are curled tori shown in Fig. 10. In order to get the unambiguous result of the propagation of the cell of the quantum lattice along a closed path crossing the singular line, the elementary cell is doubled. Taken from [58]

Quantum Bifurcations, Figure 14
Representation of a lattice with \(1 : 2\) rational defect by cutting and gluing. Left: The elementary cell goes through cut in an ambiguous way. The result depends on the place where the cell crosses the cut. Right: Double cell crosses the cut in an unambiguous way. Taken from [58]

Quantum Bifurcations, Figure 15
Schematic representation of the inverse images for a problem with bidromy in the form of the unfolded surface. Each connected component of the inverse image is represented as a single point. The path \(b' - a - b''\) starts and ends at the same point of the space of possible values of integrals of motion but it starts at one connected component and ends at another one. At the same time the path goes only through regular tori. Taken from [70]

Bifurcations of “Quantum Bifurcation Diagrams”

We want now to stress some differences in the role of internal and external control parameters. From one point-of-view a quantum problem, which corresponds in the classical limit to a multidimensional integrable classical model, possesses a joint spectrum qualitatively described by a “quantum bifurcation diagram”. This diagram shows that the joint spectrum is formed from several parts of regular lattices through a cutting and gluing procedure. Going from one regular region to another is possible by crossing singular lines. The parameter defined along such a path can be treated as an internal control parameter. It is essentially a function of values of integrals of motion. To cross the singular line is equivalent to passing the quantum bifurcation for a family of reduced systems with a smaller number of degrees of freedom.

On the other side we can ask the following more general question. What kinds of generic modifications of “bi-

Is my change here OK?
Quantum Bifurcations, Figure 16
Joint quantum spectrum for problem with bidromy. Quantum states are given by two numbers (energy, E, and polyad number, n) which are the eigenvalues of two mutually commuting operators. Inside the OAB curvilinear triangle two regular lattices are clearly seen. One can be continued smoothly through the OC boundary whereas another continues through the BC boundary. This means that the regular part of the whole lattice can be considered as a one self-overlapping regular lattice. The figure suggests also the possibility to define the propagation of a double cell along a "bipath" through the singular line BO which leads to splitting of the cell into two elementary cells fusing at the end into one cell defining in such a way the "bidromy" transformation associated with a bipath. Taken from [70].

Semi-Quantum Limit and Reorganization of Quantum Bands
Up to now we have discussed the qualitative modifications of internal structures of certain groups of quantum levels which are typically named bands. Their appearance is physically quite clear in the adiabatic approximation. The existence of fast and slow classical motions manifests itself in quantum mechanics through the formation of so-called energy bands. The big energy difference between energies of different bands correspond to fast classical variables whereas small energy differences between energy levels belonging to the same band correspond to classical slow variables. Typical bands in simple quantum systems correspond to vibrational structure of different electronic states, rotational structure of different vibrational states, etc.

If now we have a quantum problem which shows the presence of bands in its energy spectrum, the natural generalization consists of putting this quantum system in a family, depending on one (or several) control parameters. What are the generic qualitative modifications which can be observed within such a family of systems when control parameters vary? Apart from qualitative modifications of the internal structure of individual bands which can be treated as the earlier discussed quantum bifurcations, another qualitative phenomenon is possible, namely the redistribution of energy levels between bands or more generally, the reorganization of bands under the variation of some control parameters [8,26,28,62,68]. In fact this phenomenon is very often observed in both the numerical simulations and the real experiments with molecular systems exhibiting bands. A typical example of molecular rovibrational energy levels classified according to their energy and angular momentum is shown in Fig. 17. It is important to note that the number of energy levels in bands before and after their “intersection” changes.
The same phenomenon of the redistribution of energy levels between energy bands can be understood by the example of a much simpler quantum system of two coupled angular momenta, say orbital angular momentum and spin in the presence of a magnetic field interacting only with spin [62,68].

\[H = \frac{1 - \gamma}{S} S_z + \frac{\gamma}{NS} (N \cdot S), \quad 0 \leq \gamma \leq 1. \]

(7)

The Hamiltonian for such a system can be represented in the form of a one-parameter family (7) having two natural limits corresponding to uncoupled and coupled angular momenta. The interpolation of eigenvalues between these two limits is shown in Fig. 18 for different values of spin quantum number, \(S = 1/2, 1, 3/2 \). The quantum number of orbital momentum is taken to be \(N = 4 \). Although this value is not much larger than the \(S \) values, the existence of bands and their reorganization under the variation of the external parameter \(\gamma \) is clearly seen in the figure.

Although the detailed description of this reorganization of bands will take us rather far away from the principal subject it is important to note that in the simplest situations there exists a very close relation between the redistribution phenomenon and the Hamiltonian Hopf bifurcations leading to the appearance of Hamiltonian monodromy [81]. In the semi-quantum limit when part of the dynamical variables are treated as purely classical and all the rest as quantum, the description of the complete system naturally leads to a fiber bundle construction [27]. The role of the base space is taken by the classical phase space for classical variables. A set of quantum wave-functions associated with one point of the base space forms a complex fiber. As a whole the so-obtained vector bundle with complex fibers can be topologically characterized by its rank and Chern classes [56]. Chern classes are related to the number of quantum states in bands formed due to quantum character of the total problem with respect to “classical” variables. Modification of the number of states in bands can occur only at band contact and is associated with the modification of Chern classes of the corresponding fiber bundle [26]. The simplest situation takes place when the number of degrees of freedom associated with classical variables is one. In this case only one topological invariant – the first Chern class is sufficient to characterize the non-triviality of the fiber bundle and the difference in Chern classes is equal to the number of energy levels redistributed between corresponding bands. Moreover, in the generic situation (in the absence of symmetry) the typical behavior consists of the redistribution of only one energy level between two bands. The generic phenomena become more complicated with increasing the number of degrees of freedom for the classical part of variables. The model problem with two slow degrees of freedom (described in classical limit by the \(CP^2 \) phase space) and three quantum states was studied in [28]. A new qualitative phenomenon was found, namely, the modification of the number of bands due to formation of topologically coupled bands. Figure 19 shows the evolution of the system of energy levels along with the variation of control parameter \(\lambda \). Three quantum bands (at \(\lambda = 0 \)) transform into two bands (in the \(\lambda = 1 \) limit). One of these bands has rank one, i.e., it is associated with one quantum state. Another has rank two. It is associated with two quantum states. Both bands have non-trivial topology (non-trivial Chern classes). Moreover, it is quite important that the newly formed topologically coupled band of rank two can
Quantum Bifurcations

Rearrangement of energy levels between bands for model Hamiltonian (7) with two, three, or four states for “fast” variable. Quantum energy levels are shown by solid lines. Classical energies of stationary points for energy surfaces are shown by dashed lines. Taken from [68]

Quantum Bifurcations, Figure 19
Rearrangement of three bands into two topologically non-trivially coupled bands. Example of a model with three electronic states and vibrational structure of polyads formed by three quasi-degenerate modes. At $\lambda = 0$ three bands have each the same number of states, namely 15. In the classical limit each initial band has rank one and trivial topology. At $\lambda = 1$ there are only two bands. One of them has rank 2 and non-trivial first and second Chern classes. Taken from [28]

Multiple Resonances and Quantum State Density
Rearrangement of quantum energy states between bands is presented in the previous section as an example of a generic qualitative phenomenon occurring under variation of a control parameter. One possible realization of bands is the sequence of vibrational polyads formed by a system of resonant vibrational modes indexed by the polyad quantum number. In the classical picture this construction corresponds to the system of oscillators reduced with respect to the global action. The reduced classical phase space is in such a case the weighted projective space. In the case of particular $1:1: \ldots: 1$ resonance the corresponding reduced phase space is a normal complex projec-
Quantum Bifurcations

The specific resonance conditions impose for a quantum problem specific conditions on the numbers of quantum states in polyads. In the simplest case of harmonic oscillators with $n_1 : n_2 : \ldots : n_k$ resonance the numbers of states in polyads are given by the generating function

$$g = \frac{1}{(1 - t^{n_1})(1 - t^{n_2}) \cdots (1 - t^{n_k})} = \sum_{N} C_N t^N, \quad (8)$$

where N is the polyad quantum number. Numbers C_N are integers for integer N values, but they can be extended to arbitrary N values and represented in the form of a quasi-polynomial, i.e., a polynomial in N with coefficients being a periodic function whose period equals the least common multiplier of n_i, $i = 1, \ldots, k$. Moreover, the coefficients of the polynomial can be expressed in terms of so-called Todd polynomials which indicates the possibility of a topological interpretation of such information [52,88].

Physical Applications and Generalizations

The most clearly seen physical applications of quantum bifurcations is the qualitative modification of the rotational multiplet structure under rotational excitation, i.e., under the variation of the absolute value of the angular momentum. This is related first of all with the experimental possibility to study high J multiplets (which are quite close to the classical limit but nevertheless manifest their quantum structure) and to the possibility to use symmetry arguments, which allow one to distinguish clusters of states before and after bifurcation just by counting the number of states in the cluster, which is in the order of group of stabilizer. Nuclear rotation is another natural example of quantum rotational bifurcations [60]. Again the interest in corresponding qualitative modifications is due to the fact that rotational bands are extremely well studied up to very high J values. But in contrast to molecular physics examples, in nuclear physics it mostly happens that only ground states (for each value of J) are known. Thus, one speaks more often about qualitative changes of the ground state (in the absence of temperature) named quantum phase transitions [65].

Internal structure of vibrational polyads is less evident for experimental verifications of quantum bifurcations, but it gives many topologically non-trivial examples of classical phase spaces on which the families of Hamiltonians depending on parameters are defined [25,30,38, 41,44,46,66,76,77,85]. The main difficulty here is the small number of quantum states in polyads accessible to experimental observations. But this problem is extremely interesting from the point-of-view of extrapolation of theoretical results to the region of higher energy (or higher polyad quantum numbers) which is responsible as a rule for many chemical intra-molecular processes. Certain molecules, like CO$_2$ or acetylene (C$_2$H$_2$) are extremely well studied and a lot of highly accurate data exist. At the same time the qualitative understanding of the organization of excited states even in these molecules is not yet completed and new qualitative phenomena are just starting to be discovered.

Among other physically interesting systems it is necessary to mention model problems suggested to study the behavior of Bose condensates or quantum qubits [36,37, 74,82]. These models have a mathematical form which is quite similar to rotational and vibrational models. At the same time their physical origin and the interpretation of results is quite different. This is not an exception. For example, the model Hamiltonian corresponding in the classical limit to a Hamiltonian function defined over S^2 classical phase space is relevant to rotational dynamics, description of internal structure of vibrational polyads formed by two (quasi)degenerate modes, in particular to so-called local-normal mode transition in molecules, interaction of electromagnetic field with a two-level system, the Lipkin–Meshkov–Glick model in nuclear physics, entanglement of qubits, etc.

Future Directions

To date many new qualitative phenomena have been suggested and observed in experimental and numerical studies due to intensive collaboration between mathematicians working in dynamical system theory, classical mechanics, complex geometry, topology, etc., and molecular physicists using qualitative mathematical tools to classify behavior of quantum systems and to extrapolate this behavior from relatively simple (low energy regions) to more complicated ones (high energy regions). Up to now the main accent was placed on the study of the qualitative features of isolated time-independent molecular systems. Specific patterns formed by energy eigenvalues and by common eigenvalues of several mutually commutating observables were the principal subject of study. Existence of qualitatively different dynamical regimes for time-independent problems at different values of exact or approximate integrals of motion were clearly demonstrated. Many of these new qualitative features and phenomena are supposed to be generic and universal although their rigorous mathematical formulation and description is still absent.

On the other side, the analysis of the time-dependent processes should be developed. This step is essential in order to realize at the level of quantum micro-systems
the transformations associated with the qualitative modifications of dynamical regimes and to control such time-dependent processes as elementary reactions, information data storage, and so on. From this global perspective the main problem of the future development is to support the adequate mathematical formulation of quantitative methods and to improve our understanding of qualitative modifications occurring in quantum micro-systems in order to use them as real micro-devices.

Bibliography

Primary Literature

Please provide the location of the publisher.

Please provide the name(s) of the editor(s).

Please provide the year of publishing.

Please provide the name of the publisher.
Quantum Bifurcations

Books and Reviews