SYMMETRY

1. Symmetry operations.
2. Symmetry groups.
3. Group actions, invariants, covariants.
4. Generating functions applications.
5. Symmetry breaking and spontaneous symmetry breaking.
6. Curie principle.

Symmetry operations

- Reflection, $\quad \sigma \quad \sigma_{h}$
- Rotation $\quad C_{n}$ - over $2 \pi / n$
- Rotation-reflection $S_{n}, \quad S_{2}=i, \quad i$-inversion.
- Translation $x \rightarrow x+\delta$
- Time reversal $\quad t \rightarrow-t$
- Permutation of identical particles
- Color transformation
- Charge conjugation

Why some objects are more symmetric than others? Compare the chair, the table, the tetrahedron, the cube and the sphere.

Rotation and rotation-reflexion axes for tetrahedron et for cube.

Composition of symmetry operations

$$
\begin{gathered}
C_{n} \cdot C_{n}=C_{n}^{2} \\
\left(C_{2}\right)^{2}=E, \quad\left(C_{3}\right)^{3}=E, \quad\left(C_{n}\right)^{n}=E \\
\sigma^{2}=E, \quad\left(S_{2}\right)^{2}=i^{2}=E \\
C_{n}^{n-1}=C_{n}^{-1}
\end{gathered}
$$

The operations C_{4}^{x} and C_{4}^{y} does not commute.

GROUP

A group is a set of elements named symmetry operations

$$
G:\left\{g_{1}=E, g_{2}, \ldots, g_{N}\right\}
$$

with the law of composition :

1. $g_{i} g_{j}$ is defined and belongs to G,
2. the law of composition is associative, $\left(g_{i} g_{j}\right) g_{k}=g_{i}\left(g_{j} g_{k}\right)$, but in general it is not commutative $g_{i} g_{j} \neq g_{j} g_{i}$,
3. there exists an element unity, E, such that $E g_{i}=g_{i}=g_{i} E$, for all $g_{i} \in G$,
4. each element $\quad g_{i} \in G$ has an inverse element $\left(g_{i}\right)^{-1}$, $g_{i}\left(g_{i}\right)^{-1}=E=\left(g_{i}\right)^{-1} g_{i}$.

Figure with \mathbf{C}_{s} symmetry used in psychological tests.

Figures with 2 D -symmetry group $\mathbf{C}_{n}, n=2,3,4$

D_{3}

D_{4}

Examples of 2D-symmetry groups.

D_{1}

D_{13}

3-D symmetry group.

Group action. Orbits. Stabilizers.

Action of group C_{n} on 2- D space.
The stabilizer and the number of points in orbit are indicated.

D_{1} action

D_{2} action

D_{3} action

Orbits of $\mathbf{C}_{4 v}\left(D_{4}\right)$ action.

Stabilizer	$C_{4 v}-1$ point	
Stabilizer	C_{s}	-4 points
Stabilizer	$C_{s}^{\prime}-$	4 points
Stabilizer	$C_{1}-8$ points	

C_{2}

$\mathrm{C}_{2 v}$

C_{s}

C_{s}^{\prime}

List of 3-D finite point groups

$$
\begin{array}{rlllllllll}
\mathbf{C}_{n}, & \mathbf{S}_{2 n}, & \mathbf{C}_{n v}, & \mathbf{C}_{n h}, & \mathbf{D}_{n}, & \mathbf{D}_{n d}, & \mathbf{D}_{n h}, \\
& \mathbf{T}, & \mathbf{T}_{d}, & \mathbf{T}_{h}, & \mathbf{O}, & \mathbf{O}_{h}, & \mathbf{I}, & \mathbf{I}_{h}
\end{array}
$$

Dynamical applications of orbits and strata

Stratum - collection of orbits of the same type (with equivalent stabilizer).

Theorem (Michel, 1971). In the smooth action of a compact (or finite) group G on a finite-dimensional manifold M, the gradient of every G-invariant functions vanishes on the orbits which are isolated in their strata. These orbits are called critical.

Orbits and strata for the action of O_{h} symmetry group on the two-dimensional sphere.

Stabilizer	Number of points per orbit	Number of orbits per stratum	Comments
$C_{4 v}$	6	1	Critical
$C_{3 v}$	8	1	Critical
$C_{2 v}$	12	1	Critical
C_{s}	24	∞	Open
C_{s}^{\prime}	24	∞	Open
C_{1}	48	∞^{2}	Generic

Exercises

1. What molecules among $\mathrm{AB}_{3}, \mathrm{~A}_{2} \mathrm{~B}_{3}, \mathrm{~A}_{3} \mathrm{~B}_{3}, \mathrm{~A}_{4} \mathrm{~B}_{3}, \mathrm{~A}_{5} \mathrm{~B}_{3}, \mathrm{~A}_{6} \mathrm{~B}_{3}$ can be characterized by the equilibrium configuration of symmetry \mathbf{C}_{i} ?
2. Can equilibrium configuration of AB_{3} molecule be characterized by symmetry group $\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}, \mathbf{C}_{4}, \mathbf{C}_{s}, \mathbf{C}_{i}, \mathbf{C}_{2 v}, \mathbf{C}_{2 h}, \mathbf{C}_{3 v}, \mathbf{C}_{4 v}, \mathbf{D}_{3}$, $\mathbf{D}_{3 h}, \mathbf{T}_{d}$?
3. Find the symmetry operations for this artificial flower

4. Radilaria are found as zooplankton throughout the ocean. There are a number of species whose skeleton is formed by hexagons and pentagons. Find the number of pentagons.

polar biology pl1 f10
5. Is it possible to cover the surface of the sphere with hexagons only?
6. Let the lattice on the sphere be formed by hexagons, pentagons, and heptagons. Find restrictions on the possible number of different polygons.
7. Let us suppose that instead of sphere we have a torus.
8. Is it possible to construct on the surface of torus a lattice formed by hexagons only?
9. If the lattice on the surface of torus is formed by pentagons, hexagons, and heptagons what is the restriction on the number of different polygons?
10. Find the number of hexagons and pentagons for the Morocco‘s wooden toy.

Generating functions for invariants

$$
1-D \text { symmetry group } \quad x \longrightarrow-x
$$

Variable x is not invariant under the group action. x^{2} is invariant under the group action.

What is the number of invariants in each degree, that can be constructed?
The obvious answer can be written in terms of generating function

$$
\frac{1}{1-t^{2}}=\sum_{n=0}^{\infty} t^{2 n}=1+t^{2}+t^{4}+\ldots
$$

There is one invariant in each non-negative even degree.
Arbitrary invariant can be written as a polynomial of $x^{2}: \mathcal{P}\left(x^{2}\right)$

3- D inversion symmetry group $\quad\{x, y, z\} \longrightarrow\{-x,-y,-z\}$.
It is possible to construct 6 quadratic invariants :

$$
x^{2}, y^{2}, z^{2}, x y, y z, x z
$$

Generating function for invariants:

$$
\frac{1+3 t^{2}}{\left(1-t^{2}\right)^{3}}=1+6 t^{2}+15 t^{4}+28 t^{6}+\ldots
$$

or in more detailed form depending on three auxiliary variables

$$
\frac{1+t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}}{\left(1-t_{1}^{2}\right)\left(1-t_{2}^{2}\right)\left(1-t_{3}^{2}\right)}
$$

Arbitrary invariant polynomial has the form :

$$
\mathcal{P}_{0}\left(x^{2}, y^{2}, z^{2}\right)+x y \mathcal{P}_{1}\left(x^{2}, y^{2}, z^{2}\right)+y z \mathcal{P}\left(x^{2}, y^{2}, z^{2}\right)+x z \mathcal{P}\left(x^{2}, y^{2}, z^{2}\right)
$$

O_{h} cubic group action on three spatial variables x, y, z.

$$
\frac{1}{\left(1-t^{2}\right)\left(1-t^{4}\right)\left(1-t^{6}\right)}
$$

Symbolic meaning : there are three invariant polynomials, one θ_{2} of degree 2 , one θ_{4} of degree 4 , and one θ_{6} of degree 6 .
Arbitrary invariant is a polynomial $\mathcal{P}\left(\theta_{2}, \theta_{4}, \theta_{6}\right)$

Examples of group actions and spaces of orbits.

One-dimensional motion under presence of Z_{2} symmetry.
Symmetry group action : $(x) \rightarrow(-x)$.
In coordinate space $x=0$ is the only one-point orbit. It is critical.
All other orbits includes two points $\pm x_{0}$ with $x_{0} \neq 0$.
Space of orbits is a ray.

$x=0$ is always a stationary point. If there is stationary point at $x \neq 0$ there are necessarily two equivalent stationary points.

Going from $x=0$ minimum to minimum at $x \neq 0$ corresponds to spontaneous symmetry breaking phenomenon.

Characteristic features of spontaneous symmetry breaking.
Symmetry of the problem is not changed.
Symmetry of solution is changed (decreased).
The number of solutions increases.

Political cartoon ca. 1900, showing the United States Congress as Buridan's ass, hesitating between a Panama route or a Nicaragua route for an Atlantic-Pacific canal.

$$
\begin{aligned}
& \mathrm{l}=0 \quad \mathrm{l}=1 \quad \mathrm{l}=2 \quad \mathrm{l}=0 \quad \mathrm{l}=1 \quad \mathrm{l}=2 \\
& n=3 \quad 9 \\
& \square \quad \frac{5}{3} \\
& 1 \\
& \mathrm{n}=2 \quad 4 \\
& -\frac{}{3} \\
& \bar{\equiv} \\
& \mathrm{n}=1 \quad 1 \\
& \text { H atom } \\
& \text { Central perturbation }
\end{aligned}
$$

Schematic representation of the degeneracy splitting of hydrogen atom levels due to symmetry breaking.

$\mathbf{D}_{\infty h}$

D_{∞}

$\mathbf{C}_{\infty h}$

$\mathbf{C}_{\infty v}$

Examples of realization of axial symmetry groups.
Non-deformed cylinder - $\mathbf{D}_{\infty h} ; \quad$ twist cylinder - \mathbf{D}_{∞}; rotating cylinder - $\mathbf{C}_{\infty h}$; cylinder with axis asymmetry $-\mathbf{C}_{\infty v}$

Electric field - $C_{\infty v} \quad$ Magnetic field $-C_{\infty h}$

Table 1: Analogy between Magnus effect and Hall effect.

Hydrodynamics
Rotating cylinder
Uniform hydrodynamic flow
Force acting on cylinder
Magnus effect

Electromagnetism
Magnetic field
Electric current
Force acting on conductor
Hall effect

Slides for lectures 4-5 are available at http://purple.univ-littoral.fr/~boris/KyotoLect4.pdf

