SYMMETRY

- 1. Symmetry operations.
- 2. Symmetry groups.
- 3. Group actions, invariants, covariants.
- 4. Generating functions applications.
- 5. Symmetry breaking and spontaneous symmetry breaking.
- 6. Curie principle.

Symmetry operations

- Reflection, $\sigma \sigma_h$
- Rotation C_n over $2\pi/n$
- Rotation-reflection S_n , $S_2 = i$, *i* inversion.
- Translation $x \to x + \delta$
- Time reversal $t \to -t$
- Permutation of identical particles
- Color transformation
- Charge conjugation

Why some objects are more symmetric than others? Compare the chair, the table, the tetrahedron, the cube and the sphere.

Rotation and rotation–reflexion axes for tetrahedron et for cube.

Composition of symmetry operations

$$C_n \cdot C_n = C_n^2$$

$$(C_2)^2 = E, \quad (C_3)^3 = E, \quad (C_n)^n = E$$

$$\sigma^2 = E, \quad (S_2)^2 = i^2 = E$$

$$C_n^{n-1} = C_n^{-1}$$

The operations C_4^x and C_4^y does not commute.

GROUP

A group is a set of elements named symmetry operations

$$G: \{ g_1 = E, g_2, \ldots, g_N \},\$$

with the law of composition :

- 1. $g_i g_j$ is defined and belongs to G,
- 2. the law of composition is associative, $(g_ig_j)g_k = g_i(g_jg_k)$, but in general it is not commutative $g_ig_j \neq g_jg_i$,
- 3. there exists an element unity, E, such that $Eg_i = g_i E$, for all $g_i \in G$,
- 4. each element $g_i \in G$ has an inverse element $(g_i)^{-1}$, $g_i(g_i)^{-1} = E = (g_i)^{-1}g_i$.

Figure with C_s symmetry used in psychological tests.

Figures with 2D-symmetry group C_n , n = 2, 3, 4

Examples of 2D-symmetry groups.

 D_{13}

Group action. Orbits. Stabilizers.

Action of group C_n on 2-D space.

The stabilizer and the number of points in orbit are indicated.

 D_1 action

 D_2 action

Orbits of C_{4v} (D_4) action.

Stabilizer	C_{4v}	-	1 point
Stabilizer	C_s	-	4 points
Stabilizer	C'_s	-	4 points
Stabilizer	C_1	-	8 points

 \mathbf{C}_{2v}' \mathbf{C}_4 \mathbf{C}_{2v} \mathbf{C}_2 \mathbf{C}_{s} \mathbf{C}_{s}^{\prime}

 O_h

Dynamical applications of orbits and strata Stratum - collection of orbits of the same type (with equivalent stabilizer).

Theorem (Michel, 1971). In the smooth action of a compact (or finite) group G on a finite-dimensional manifold M, the gradient of every G-invariant functions vanishes on the <u>orbits</u> which are <u>isolated in their</u> <u>strata</u>. These orbits are called <u>critical</u>.

Orbits and strata for the action of O_h symmetry group on the two-dimensional sphere.

Stabilizer	Number of points	Number of orbits	Comments
	per orbit	per stratum	
C_{4v}	6	1	Critical
C_{3v}	8	1	Critical
C_{2v}	12	1	Critical
C_s	24	∞	Open
C'_s	24	∞	Open
C_1	48	∞^2	Generic

Exercises

1. What molecules among AB₃, A₂B₃, A₃B₃, A₄B₃, A₅B₃, A₆B₃ can be characterized by the equilibrium configuration of symmetry C_i ?

2. Can equilibrium configuration of AB₃ molecule be characterized by symmetry group C_1 , C_2 , C_3 , C_4 , C_s , C_i , C_{2v} , C_{2h} , C_{3v} , C_{4v} , D_3 , D_{3h} , T_d ?

3. Find the symmetry operations for this artificial flower

4. Radilaria are found as zooplankton throughout the ocean. There are a number of species whose skeleton is formed by hexagons and pentagons.Find the number of pentagons.

- 1. Is it possible to cover the surface of the sphere with hexagons only?
- 2. Let the lattice on the sphere be formed by hexagons, pentagons, and heptagons. Find restrictions on the possible number of different polygons.

- 5. Let us suppose that instead of sphere we have a torus.
 - 1. Is it possible to construct on the surface of torus a lattice formed by hexagons only?
 - 2. If the lattice on the surface of torus is formed by pentagons, hexagons, and heptagons what is the restriction on the number of different polygons?
- 6. Find the number of hexagons and pentagons for the Morocco's wooden toy.

Generating functions for invariants 1-D symmetry group $x \longrightarrow -x$ Variable x is not invariant under the group action.

 x^2 is invariant under the group action.

What is the number of invariants in each degree, that can be constructed? The obvious answer can be written in terms of generating function

$$\frac{1}{1-t^2} = \sum_{n=0}^{\infty} t^{2n} = 1 + t^2 + t^4 + \dots$$

There is one invariant in each non-negative even degree. Arbitrary invariant can be written as a polynomial of x^2 : $\mathcal{P}(x^2)$ 3-*D* inversion symmetry group $\{x, y, z\} \longrightarrow \{-x, -y, -z\}.$

It is possible to construct 6 quadratic invariants : $x^2, y^2, z^2, xy, yz, xz.$

Generating function for invariants:

$$\frac{1+3t^2}{(1-t^2)^3} = 1+6t^2+15t^4+28t^6+\dots$$

or in more detailed form depending on three auxiliary variables

$$\frac{1+t_1t_2+t_1t_3+t_2t_3}{(1-t_1^2)(1-t_2^2)(1-t_3^2)}$$

Arbitrary invariant polynomial has the form :

$$\mathcal{P}_0(x^2, y^2, z^2) + xy\mathcal{P}_1(x^2, y^2, z^2) + yz\mathcal{P}(x^2, y^2, z^2) + xz\mathcal{P}(x^2, y^2, z^2)$$

 O_h cubic group action on three spatial variables x, y, z.

$$\frac{1}{(1-t^2)(1-t^4)(1-t^6)}$$

Symbolic meaning : there are three invariant polynomials, one θ_2 of degree 2, one θ_4 of degree 4, and one θ_6 of degree 6.

Arbitrary invariant is a polynomial $\mathcal{P}(\theta_2, \theta_4, \theta_6)$

Examples of group actions and spaces of orbits.

One-dimensional motion under presence of Z_2 symmetry.

Symmetry group action : $(x) \rightarrow (-x)$.

In coordinate space x = 0 is the only one-point orbit. It is *critical*.

All other orbits includes two points $\pm x_0$ with $x_0 \neq 0$.

Space of orbits is a ray.

x = 0 is always a stationary point. If there is stationary point at $x \neq 0$ there are necessarily two equivalent stationary points.

Going from x = 0 minimum to minimum at $x \neq 0$ corresponds to spontaneous symmetry breaking phenomenon.

Characteristic features of spontaneous symmetry breaking.

Symmetry of the problem is not changed.

Symmetry of solution is changed (decreased).

The number of solutions increases.

Political cartoon ca. 1900, showing the United States Congress as Buridan's ass, hesitating between a Panama route or a Nicaragua route for an Atlantic-Pacific canal.

Examples of realization of axial symmetry groups. Non-deformed cylinder - $\mathbf{D}_{\infty h}$; twist cylinder - \mathbf{D}_{∞} ; rotating cylinder - $\mathbf{C}_{\infty h}$; cylinder with axis asymmetry - $\mathbf{C}_{\infty v}$

Electric field - $C_{\infty v}$ Magnetic field - $C_{\infty h}$

Table 1: Analogy between Magnus effect and Hall effect.

Hydrodynamics	Electromagnetism	
Rotating cylinder	Magnetic field	
Uniform hydrodynamic flow	Electric current	
Force acting on cylinder	Force acting on conductor	
Magnus effect	Hall effect	

Slides for lectures 4 - 5 are available at http://purple.univ-littoral.fr/~boris/KyotoLect4.pdf