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“The great book of the Universe stays open before
our eyes; but to understand it, we have first to learn
the language in which it is written, the
mathematics.”

Galileo Galilei (1564-1642)

What mathematics to use?

J.L. Lagrange (1736 - 1813) J. J. Rousseau (1712 - 1778)
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Regular Polyhedrons. (Platon bodies)
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Johannes Kepler (1571 - 1630)
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Reǹe Thom (1923 - 2002)
[Structural Stability and Morphogenesis, W.A.Benjam, 1972]

A

p

experimental

model  1

model  2

What model describes better the behavior of quantityA as a function of

control parameterp ?

9



Good simulationshould include asmuch detail as possible.

Good modelshould include aslittle detail as possible.
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Model of war.

y

x x

y

ẋ = −by, ẋ = −b(x, y)y,

ẏ = −ax, ẏ = −a(x, y)x,

“rigid“ “soft“
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Logistic model.

k(x)x

x x x

t
A

B B

A A

B

ẋ = k(x)x; k(x) = ax− bx2
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Table 1: Frequency of appearence as first digit of numbers in2n, n ∈ N
∗

sequence.

First digit 1 2 3 4 5 6 7 8 9

Frequency 0,301 0,176 0,125 0,097 0,079 0,067 0,058 0,051 0,046
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Combinatorial tools

1. Lucky tickets.

2. Generating functions.

3. Fibonacci numbers and their occurence in Nature.

4. Gold section (“Divine proportion“)
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Lucky tickets

“Lucky“ “Unlucky“

123 222 123 234

264 156 531 777

Let an be the number of triples giving the sum of digits equaln.

a0 = 1 (only 000 has sum 0),

a1 = 3 ( there are three triples 001, 010, 100),

a2 = 6 ( triples 002, 020, 200, 011, 101, 110), etc.

If we knowan, the sum of lucky tickets is
∑

a2n. We need to find 28

numbers and then to calculate the sum of their squares.
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Construction through generating functions

A1(s) = 1 + s+ s2 + · · ·+ s9

This polynomial has the following symbolic meaning: The coefficient at

sn is equal to the number of one-digit numbers with the sum of digits

equaln.

Now the polynomialA2 should be of degree 18.

A2(s) = 1 + 2s+ 3s2 + 4s3 + · · ·

It can be easily reconstructed fromA1.

A2(s) = (A1(s))
2
.
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In a similar way we see that

A3(s) = (A1(s))
3

It is easy to calculate the coefficients ofA3(s)

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 63, 69, 73, 75, 75, 73, 69, 63, 55, 45, . . . 3, 1

The sum of squares of all these coefficients gives the number of lucky

tickets. We get55252.
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Going to complex variables

Let consider along withA3(s) polynomial the Laurent polynomialA3(1/s).

A3(1/s) = a0 +
a1
s

+
a2
s2

+ . . .+
a27
s27

The product

P (s) = A3(s)A3

(

1

s

)

=
(

a0 + a1s + . . . + a27s
27

)

(

a0 +
a1

s
+

a2

s2
+ . . . +

a27

s27

)

is also a Laurent polynomial.

P (s) =
27
∑

k=−27

pk sk

The coefficientp0 at s0 in this product has the form

p0 = a20 + a21 + . . .+ a227

Now we can use the the basic fact of the theory of complex variables,
Cauchy theorem, to calculatep0
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Deviation about Laurent series

The Laurent series for a complex functionf(z) about a pointc is given

by:

f(z) =
∞
∑

n=−∞

an(z − c)n

where thean are constants, defined by a line integral

an =
1

2πi

∮

γ

f(z) dz

(z − c)n+1
.

The path of integrationγ is a counterclockwise closed path containing no

self-intersections, enclosingc and lying in an annulusA in whichf(z) is

holomorphic (analytic). The expansion forf(z) will then be valid

anywhere inside the annulus.
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A Laurent series is defined with respect to a particular pointc and a path of integrationγ.

The path of integrationγ must lie in an annulus (shown here in red) inside of whichf(z) is

holomorphic (analytic).

For any Laurent polynomialP (s), its p0 term is expressed as

p0 =
1

2πi

∮

P (s)ds

s
,

where integration is over a circle including the zero.
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Lucky tickets through complex variables

P (s) = A3(s)A3(1/s) = (A1(s))
3 (A1(1/s))

3

=

(

1− s10

1− s

)3(

1− s−10

1− s−1

)3

=

(

2− s10 − s−10

2− s− s−1

)3

Replacings = exp(iφ)

p0 =
1

2π

∫

2π

0

(

2− 2 cos(10φ)

2− 2 cosφ

)

3

dφ =
1

2π

∫

2π

0

(

sin(5φ)

sin φ

2

)

6

dφ

=
1

π

∫ π

0

(

sin(10φ)

sinφ

)

6

dφ =
1

π

∫ π

2

−

π

2

(

sin(10φ)

sinφ

)

6

dφ

Brute forceMAPLE calculation gives 55252. But from the point of view of physical

applications it is interesting to evaluate this integral approximatively.
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φ

f(   )φ

0

Figure 1: Oscillating functionf(φ) = sin(10φ)
sinφ

The function under integral has maximum atφ = 0. Main contribution to

the integral comes from the interval[−π/10, π/10]. At φ = ±π/10 the

first zero of the function is located.
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About stationary phase method

Method of stationary phase enables us to estimate the value of integral

∫ π/10

−π/10

f tdφ =

∫ π/10

−π/10

et ln fdφ (1)

at t → ∞. The idea of the method is : At larget the value of integral is

defined by the behavior of the functionln f (the phase) in the

neighborhood of its stationary point0, i.e. the point where(ln f)′ = 0, or

equivalentlyf ′ = 0. Near the zero:

f(φ) =
sin(10φ)

sinφ
≈ 10

(

1− 33

2
φ2

)

; ln f(φ) ≈ ln 10− 33

2
φ2.
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At larget we have

∫ π/10

−π/10

et(ln 10− 33
2
φ2)dφ = et ln 10

∫ π/10

−π/10

e−
33
2
tφ2

dφ ≈ et ln 10

√
2π√
33t

Here at last step we extend the limits of integration till±∞.

Puttingt = 6 gives for the number of lucky tickets

p0 ≈ 106

3
√
11π

≈ 56700.

The error of this approximate estimation is about 3% .
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Application of inclusion - exclusion principle

Proposition. The number of lucky tickets is equal to the number of

tickets with the sum of numbers equal 27.

Let us suppose that the ticketa1b1c1a2b2c2 is lucky.

We put in correspondence to this ticket the ticket

a1b1c1(9− a2)(9− b2)(9− c2).

The sum of numbers for this ticket is 27.

The correspondence

a1b1c1a2b2c2 ⇔ a1b1c1(9− a2)(9− b2)(9− c2) is one-to-one.

This means that in order to calculate the number of lucky tickets we can

calculate the number of tickets with the sum over all six positions being

equal 27.
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Deviation about formal logic

Let B be the set whose elements can have some of propertiesc1, . . . .cm.
Let N(ci), 1 ≤ i ≤ m be the number of elements ofB possessing the
propertyci. LetN(ci, cj), i 6= j be the number of elements ofB
possessing simultaneously both propertiesci andcj , and so on.

N(1) is the total number of elements inB.

Theorem. (inclusion-exclusion principle)

The number of elements inB which do not possess any of propertiesci,
i = 1, . . . ,m equals

N(1)−N(c1)−. . .−N(cm)+N(c1, c2)+N(c1, c3)+. . .−N(c1, c2, c3)−. . .

Symbolic writing of the same relation:

(1−c1)(1−c2) . . . (1−cm) = 1−c1−. . .−cm+c1c2+c1c3+. . .−c1c2c3−. . .
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Proof

Split all elements ofB into subsets B = B0 ∪B1 ∪ . . . ∪Bm.

EachBl includes all elements possessingl properties.

Let us consider the sequence of expressions:

N(1),

N(1)−N(c1)− . . .−N(cm),

N(1)−N(c1)− . . .−N(cm) +N(c1, c2) + . . .+N(cm−1, cm),

. . . . . .

Now calculate how many times we take into account each element of Bl

for all these expressions.
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B0 B1 B2 B3 . . . Bl

1 1 1 1 . . . 1

1 1− 1 1− 2 1− 3 . . . 1− l

1 1− 1 1− 2 + 1 1− 3 + 3 . . . 1-l+
( l

2

)

. . . . . . . . . . . . . . . . . .

1 0 0 0 . . . 1 -
( l

1

)

+
( l

2

)

+. . . + (−1)l
( l

l

)

We get just the number of elements possessing no propertiesci.
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Lucky tickets through inclusion-exclusion principle

Let us consider all possible compositions of six non-negative numbers
with the sum 27. We introduce also six properties of such compositions.
Propertyci means that the number in thei-th position is not smaller than
10. In such a case, the number of lucky tickets is equal to the number of
compositions which do not possess any of propertiesc1, c2, . . . , , c6.

Now we apply the theorem

N(1) =





32

5



 ; N(ci) =





22

5



 ; N(ci, cj) =





12

5





Note, N(ci, cj , ck) = N(ci, cj , ck, cm) = . . . = 0

The number of lucky tickets is:

p0 =





32

5





− 6





22

5



+ 15





12

5



 .
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Elementary generating functions

Simplest sequence 1, 1, 1, . . ..

The generating function for this sequence is

G(t) = 1 + t+ t2 + t3 + t4 + . . . , (2)

If we multiply (2) by t we get

tG(t) = t+ t2 + t3 + t4 + . . . = G(t)− 1, (3)

Consequently,

G(t) =
1

1− t
, (4)

we got the sum of the geometric progression.

30



Newton‘s binomial theorem.

(1 + s)α = 1 +
α

1!
s+

α(α− 1)

2!
s2 +

α(α− 1)(α− 2)

3!
s3 + . . . , (5)

Hereα is arbitrary complex number. Forα positive integer number we

get standard definition. The binomial coefficient




N

k



 =
N(N − 1) . . . (N − k + 1)

k!
(6)

gives the number of ways, disregarding order, that ak objects can be

chosen from amongN objects; more formally, the number ofk-element

subsets (ork-combinations) of anN -element set.
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Fibonacci sequence

The Fibonacci sequence is determined by its initial two terms
f0 = f1 = 1 and by the relation

fn+2 = fn+1 + fn. (7)

The initial terms of the sequence are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . , (8)

In order to find the generating function for Fibonacci sequence

Fib(s) = 1 + s+ 2s2 + 3s3 + 5s4 + . . . (9)

we multiply both sides of (9) bys+ s2.

(s+ s2)Fib(s) = s+ s2 + 2s3 + 3s4 + 5s5 + . . .+

+ s2 + s3 + 2s4 + 3s5 + . . .+

= s+ 2s2 + 3s3 + 5s4 + 8s5 + . . . ,

32



or equivalently

(s+ s2)Fib(s) = Fib(s)− 1, (10)

This gives the generating function

Fib(s) =
1

1− s− s2
(11)

In order to find the explicit form of the coefficients we can rewrite the
generating function as a sum of two elementary fractions:

1

1− s− s2
=

1
√

5

(

1

s− s2
−

1

s− s1

)

=
1
√

5





1

s1

(

1−
s
s1

) −

1

s2

(

1−
s
s2

)





Here s1 = (−1 +
√
5)/2, s2 = (−1−

√
5)/2 are the roots of the

equation1− s− s2 = 0. It is useful to note thats1s2 = −1.
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Now replacing each elementary fraction by a geometric progression

Fib(s) =
1√
5s1

(

1 +
s

s1
+

s2

s21
+ . . .

)

− 1√
5s2

(

1 +
s

s2
+

s2

s22
+ . . .

)

we get the explicit form of Fibonacci coefficients

fn =
1√
5

(

s−1−n
1 − s−1−n

2

)

=
(−1)n√

5

(

sn+1
1 − sn+1

2

)

=
(−1)n√

5





(

−1 +
√
5

2

)n+1

−
(

−1−
√
5

2

)n+1



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Fibonacci numbers in Nature.
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Example of spiral phyllotaxis. There are 13 left spires and 8right spires.
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Example of spiral phyllotaxis. There are three sequences ofparastichies.

The number of spires in each family is 8,13,21.
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Golden ratio - “Divine proportion“

Two quantitiesa andb are said to be in the golden ratioϕ if:

a+ b

a
=

a

b
; ϕ =

a

b
.

This equation unambiguously definesϕ.

ϕ2 − ϕ− 1 = 0.

The only positive solution to this quadratic equation is

ϕ =
1 +

√
5

2
≈ 1.61803 39887 . . .

Luca Pacioli’s book“De divina proportione“,1509.
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“I believe that this geometric proportion served the Creator as an idea

when he introduced the continuous generation of similar objects from

similar objects.“ J. Kepler.

Golden ratio can be found in

• Regular pentagon (diagonal to edge ratio; intersection of two

diagonals)

1

τ

A

B

C

1

τ

Golden ratio in pentagon and pentagram.
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• Golden rectangle (after cutting a square we get a new golden

rectangle)

H

A

B C

D

E

F

G

ABCD is an initial golden rectangle. After cutting out square

ABEF we get golden rectangleDCEF . After cutting out square

CEGH we get again the golden rectangleDHGF .
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• Icosahedron - three golden rectangles

1

1

τ

τ

τaa

Three mutually orthogonal golden rectangles with common center

have 12 vertexes forming regular icosahedron.

Golden rectangle inscribed into square divides its edges ingolden

ratio.

⇒ Icosahedron can be inscribed into octahedron.
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Deviation: Continued fractions

Any real numberx can be represented as continued fraction

{a0, a1, a2, a3, ...}, a0 ∈ Z etai ∈ N, i ≥ 1 :

x = a0 +
1

a1 +
1

a2+
1

a3+...

Examples :

1. Continued fraction of rational number107 :

10

7
= 1 +

3

7
= 1 +

1
7
3

= 1 +
1

2 + 1
3

.

2. Continued fraction for golden ratio :

τ = 1 +
1

1 + 1
1+ 1

1+...

.
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3. Continued fraction of numberπ :

π = 3 +
1

7 + 1
15+ 1

1+ 1
292+...

Rational approximation

The sequence{a0, a1, a2, a3, ...} is finite for rational numbers. It is

infinite for irrational numbers.

Consecutive rational approximations to number

π = 3.14159265358979324 . . . :

3 +
1

7
≈ 3.142; 3 +

1

7 + 1
15

≈ 3.14151; 3 +
1

7 + 1
15+ 1

1

≈ 3.1415929;

3 +
1

7 + 1
15+ 1

1+ 1
292

≈ 3.1415926530.
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Rational approximation{a0, a1, a2, ..., ak} of irrational number is better

if the numbersai are bigger.

Convergence of rational approximations is the slowest for the golden ratio

(all ai are equal to 1).

Interesting question concerns the probability of appearance of numbersk

( positive integer) in the representation of real numbers bycontinued

fractions. The answer is :

pk =
1

ln 2
ln

(

1 +
1

k(k + 2)

)

.

The number 1 appears the most frequently (p1 ≈ 0.48).
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Comments to exercises
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Leonardo Da Vinci (April 15, 1452 May 2, 1519)
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Modern sculpture in Perth, Australia.
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Penrose impossible triangle.
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