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“The great book of the Universe stays open befofe
our eyes; but to understand it, we have first to legrn
the language in which it is written, the
mathematics

Galileo Galilei (1564-1642)

What mathematics to use?

J.L. Lagrange (1736 - 1813) J. J. Rousseau (1712 - 177B)



Regular Polyhedrons. (Platon bodies)
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Johannes Kepler (1571 - 1630)













Rere Thom (1923 - 2002)

[Structural Stability and Morphogenesis, W.A.Benjam, 207
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What model describes better the behavior of quamigs a function of
control parametep ?




Good simulationshould include asiuch detail as possible.

Good modelshould include atittle detail as possible.




Model of war.
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Logistic model.




Table 1: Frequency of appearence as first digit of numbe2s,im € N*
seqguence.

First digit 1 2 3 4 5 6 7 8 9
Frequency | 0,301 0,176 0,125 0,097 0,0/9 0,067 0,058 0,051 0,046




Combinatorial tools

1. Lucky tickets.
2. Generating functions.
3. Fibonacci numbers and their occurence in Nature.

4. Gold section (“Divine proportion®)




Lucky tickets

“Lucky* “Unlucky”
123 222 123 234
264 156 031 777

Let a,, be the number of triples giving the sum of digits equal
ao = 1 (only 000 has sum 0),

a1 = 3 (there are three triples 001, 010, 100),

as = 6 (triples 002, 020, 200, 011, 101, 110), etc.

If we know a,,, the sum of lucky tickets i§" a. We need to find 28
numbers and then to calculate the sum of their squares.




Construction through generating functions

A1(s) =1+s+s"+--+5

This polynomial has the following symbolic meaning: Thefloent at

s™ is equal to the number of one-digit numbers with the sum atslig
equaln.

Now the polynomiald, should be of degree 18.
As(s) =1+2543s* 445 4 -
It can be easily reconstructed frofy .

As(s) = (Ai(s))”.




In a similar way we see that

As(s) = (A1(s))”

It is easy to calculate the coefficients 4% (s)

1,3,6,10,15, 21, 28, 36,45, 55, 63,69,73,75, 75,73,69,63, 55,45,...3,1

The sum of squares of all these coefficients gives the nunfbdecky
tickets. We geb5252.




Going to complex variables

Let consider along witti3(s) polynomial the Laurent polynomiads(1/s).

ai as aat
Aa(1 — — 4+ =4+ .4 —=
3( /s) ao + S +82+ —|—S27

The product
P(s) = As(s)As (%) = (CL0-|—CL18-|—-.--|—CL27827) (a0+a—;+a—2+---—|—22—7)

s2

IS also a Laurent polynomial.

The coefficienty at s® in this product has the form
p0:a3+a%—|—...+a%7

Now we can use the the basic fact of the theory of complex bkasa
Cauchy theorem, to calculatg




Deviation about Laurent series

The Laurent series for a complex functigfz) about a point is given
by:

f)= 3 anz—o)"

n=—oo

where thez,, are constants, defined by a line integral

0 — 1 f(z)dz

C2mi f, (2 — o)t

The path of integratior is a counterclockwise closed path containing np
self-intersections, enclosingand lying in an annulugl in which f(z) is
holomorphic (analytic). The expansion 6(z) will then be valid
anywhere inside the annulus.
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A Laurent series is defined with respect to a particular poard a path of integratiom.

The path of integratioy must lie in an annulus (shown here in red) inside of whfi¢h) is
holomorphic (analytic).

For any Laurent polynomiaP(s), its pg term is expressed as

1 P(s)ds
Po= 5 5
271 S

where integration is over a circle including the zero.




Lucky tickets through complex variables

A3(8>A3(1/38) = ( 1(8))‘9’3(141(1/8»3 3
(=) (=) - (55=)

Replacings = exp(i¢)

1 [P (2-2cos(10¢)\° ,, 1 [* [sin(5¢) "
o= of 0 ( 2—2cos¢ ) dqb—%/o (sing 1

2

1 ™ (sin(106)\° 1 [Z (sin(10¢)\°
_;/0 ( sin @ ) dqb-;/__( sin @ ) do

s
2

Brute forceMAPLE calculation gives 55252. But from the point of view of phyaic

applications it is interesting to evaluate this integrg@ximatively.




sin(10¢)
sin ¢

Figure 1: Oscillating functiorf (¢) =

The function under integral has maximumgat 0. Main contribution to
the integral comes from the intervial 7 /10, 7 /10]. At ¢ = +7/10 the
first zero of the function is located.




About stationary phase method

Method of stationary phase enables us to estimate the valotegral

/10 /10
/ Flde — e dg (1)

—7 /10 —7 /10

att — oo. The idea of the method is : At largehe value of integral is
defined by the behavior of the functibm f (the phase) in the
neighborhood of its stationary poidti.e. the point wher¢ln f)’ = 0, or
equivalentlyf’ = 0. Near the zero:

sin(10¢)

sin @

~ 10 (1 — ?&) : In f(¢) ~In10 — ?&.

f(o) =




At larget we have

/10 /10
/ et(lnm—%gb?)d(b _ etlnlO/ o~

—7 /10 —7 /10

Here at last step we extend the limits of integrationdtitio.

Puttingt = 6 gives for the number of lucky tickets

~ 10° ~ 56700
W TT AR

The error of this approximate estimation is about 3% .




Application of inclusion - exclusion principle

Proposition. The number of lucky tickets is equal to the number of
tickets with the sum of numbers equal 27.

Let us suppose that the ticketa,b,ci1asbaco IS lucky.
We put in correspondence to this ticket the ticket
a1b1c1(9 —az)(9 — b2)(9 — ca).
The sum of numbers for this ticket is 27.
The correspondence
airbiciasbacs <& a1bici(9 — a2)(9 —b2)(9 — c2) IS one-to-one.

This means that in order to calculate the number of luckyetEkve can
calculate the number of tickets with the sum over all six fpposs being
equal 27.




Deviation about formal logic

Let B be the set whose elements can have some of propeyties .c,,.
Let N(c¢;), 1 <7 < m be the number of elements Bfpossessing the
propertyc;. Let N(c;, c¢;), ¢ # j be the number of elements 6f
possessing simultaneously both propertieandc,;, and so on.

N (1) is the total number of elements .

Theorem. (inclusion-exclusion principle)

The number of elements IB which do not possess any of propertigs
1 =1,...,m equals

N(1)—N(c1)—...—N(cm)+N(c1,c2)+N(c1,c3)+...—N(c1,c0,c3)—. ..

Symbolic writing of the same relation:

(I—c1)(1=c2) ... (1—¢p) = 1—c1—. . .—Cmtcicatcre3+. . .—c1ca03—. ..




Proof
Split all elements o8 into subsets B = By U B; U...U B,,.
EachB; includes all elements possessingroperties.

Let us consider the sequence of expressions:

Now calculate how many times we take into account each eleaids
for all these expressions.




We get just the number of elements possessing no propeyties




Lucky tickets through inclusion-exclusion principle

Let us consider all possible compositions of six non-negatumbers
with the sum 27. We introduce also six properties of such asiions.
Propertyc; means that the number in thh position is not smaller than
10. In such a case, the number of lucky tickets is equal to tingber of
compositions which do not possess any of properttes,, ..., . c.

Now we apply the theorem

Note, N(c;,cj,cx) = N(ci,cj,¢h,em) = ...
The number of lucky tickets is:




Elementary generating functions

Simplest sequence 1,1,1,. ...
The generating function for this sequence is

Gt)=1+t+t* 42 +t*+...,

If we multiply (2) byt we get
tGt)=t+t*+t2+t' + ... = G(t) — 1,

Consequently,

we got the sum of the geometric progression.



Newton'‘s binomial theorem.

— 1 — 1 — 2
(1—|—s)o‘:1—|—%s—|—a(a2' )32+a(a 3)'(04 )s3+..., (5)

Hereq is arbitrary complex number. For positive integer number we
get standard definition. The binomial coefficient

N N(N—1)...(N —k+1)

L B k! (6)

gives the number of ways, disregarding order, thiatdjects can be
chosen from amongy/ objects; more formally, the number bfelement
subsets (ok-combinations) of arnV-element set.




Fibonacci sequence

The Fibonacci sequence is determined by its initial two germ
fo = f1 = 1 and by the relation

fn—|—2 — fn—i—l + fn
The initial terms of the sequence are:
1,1,2,3,5,8,13,21,34,55,89, ...,

In order to find the generating function for Fibonacci seaqaen

Fib(s) =14 s+ 25> 4+ 35 + 55* + . ..

we multiply both sides of (9) by + s2.

(s + s*)Fib(s) = s+ s*4 25° +3s* +5s° +... +
+ 5% + 87+ 251+ 3"+ ...+
S+25% +35° +5s* +8s° 4 ...,




or equivalently
(s 4+ s*)Fib(s) = Fib(s) — 1, (10)

This gives the generating function

1
1 —s—s2

Fib(s) = (11)

In order to find the explicit form of the coefficients we can regvthe
generating function as a sum of two elementary fractions:

1 B 1 ( 1 1 >_
l1—-s—s2 B5\s—sy s—s1/) 5

Here s; = (—1++/5)/2, sy = (=1 —+/5)/2 are the roots of the
equationl — s — s? = 0. It is useful to note that; s, = —1.




Now replacing each elementary fraction by a geometric @sgjon

e (g ) e

we get the explicit form of Fibonacci coefficients




Fibonacci numbers in Nature.
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Example of spiral phyllotaxis. There are 13 left spires amiBt spires.




Example of spiral phyllotaxis. There are three sequencesuafstichies.
The number of spires in each family is 8,13,21.




Golden ratio - “Divine proportion”

Two quantitiesz andb are said to be in the golden ratoif:

a—|—b_a. _a
a b SO_b'

This equation unambiguously defines

©?—p—1=0.

The only positive solution to this quadratic equation is

145

> ~ 1.61803 39887 ...

g

Luca Pacioli’'s booK'De divina proportione“1509.




“I believe that this geometric proportion served the Creatan idea
when he introduced the continuous generation of similagaibjfrom
similar objects.” J. Kepler.

Golden ratio can be found in

e Regular pentagon (diagonal to edge ratio; intersectiowof t
diagonals)

Golden ratio in pentagon and pentagram.




e Golden rectangle (after cutting a square we get a new golden

rectangle)

A

B

E

D

C

ABCD is an initial golden rectangle. After cutting out square
ABFEF we get golden rectanglBC E'F'. After cutting out square
C EGH we get again the golden rectandld{ G F'.




e Icosahedron - three golden rectangles

a atl

Three mutually orthogonal golden rectangles with commartere
have 12 vertexes forming regular icosahedron.

Golden rectangle inscribed into square divides its edggslaen
ratio.

= |cosahedron can be inscribed into octahedron.




Deviation: Continued fractions
Any real numbetr: can be represented as continued fraction
{ag,a1,as,as,...},a90 € Zeta; € N, i > 1

1
r = ag + T
0] ‘I' o+ il
2 ag+...

Examples :

1. Continued fraction of rational numbé} ;

10 3
14 =
- +




3. Continued fraction of number :

1

1
7+ 15+ L

m™T=3++

T
I+ 5951

Rational approximation

The sequencéayg, a1, as, as, ...} is finite for rational numbers. It is
Infinite for irrational numbers.

Consecutive rational approximations to number
m = 3.14159265358979324 . . . :

~ 3.14151: 3+
1 ) 1
T+ 15 T+ m

1

~ 3.1415929:

1
3+ ——— ~ 3.1415926530.
o —

_1
1+ 553




Rational approximatiokag, a1, as, ..., ai } of irrational number is better
If the numbers:; are bigger.

Convergence of rational approximations is the slowestlfergolden ratio
(all a; are equal to 1).

Interesting question concerns the probability of appesart numbers

( positive integer) in the representation of real numbersdytinued
fractions. The answer is :

Lo (14—
= n .
Pk = 109 k(k + 2)

The number 1 appears the most frequently £ 0.48).




Comments to exercises
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Leonardo Da Vinci




Modern sculpture in Perth, Australia.




Penrose impossible triangle.




