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Abstract

We construct an elementary quaternionic slow-fast Hamiltonian dynamical system
with one formal control parameter and two slow degrees of freedom as half-integer
spin in resonance 1:1:2 with two slow oscillators. Invariant under spin reversal
and having a codimension-5 crossing of its fast Kramers-degenerate semi-quantum
eigenvalues, our system is the dynamical equivalent of the spin-quadrupole model
by Avron, Sadun, Segert, and Simon [Commun. Math. Phys. 124(4), 595–627
(1989)], exhibiting non-Abelian geometric phases. The equivalence is uncovered
through the equality of the spectral flow between quantum superbands and Chern
numbers c2 computed by Avron et al.
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1 Introduction
Parametric families of quantum mechanical systems persist naturally as one of the prin-
cipal research topics since the foundation of quantum science. Aiming at elementary
phenomena, the analysis boils down to the study of possible degeneracies of the eigen-
values of real symmetric, Hermitian, or hyper-Hermitian traceless 2×2 matrices

Hξ =
(
−m h

h∗ m

)
with det Hξ = −m2 − hh∗, (1.1a)

one of the most ubiquitous and universal mathematical problems [von Neumann and
Wigner, 1929, Arnold, 1995]. While m is necessarily real, h can be either real, com-
plex, or quaternionic. In the latter case, the isomorphism between Pauli matrices and
unit quaternions suggests using

m =
(

m 0
0 m

)
and h =

(
a + i b c + i d

−c + i d a− i b

)
with (m,a, b, c, d)∈R, (1.1b)

and considering quaternionic traceless 4×4 matrices with two doubly degenerate eigen-
values. These three basic possibilities make one of Arnold’s mathematical R-C-H trini-
ties [Arnold, 1997, 1999] illustrated in fig. 1. Since det Hξ vanishes only in m =h =0,
the real codimension of the degeneracy of the eigenvalues of Hξ, i.e., the number of
real conditions to be met typically for these eigenvalues to cross, is 2, 3, and 5 in the
R, C, and H case, respectively.

Continuous, adiabatically slow evolution of parameters ξ =(m,h) establishes con-
nections on the Hilbert space of functions representing the states of quantum systems
with Hamiltonian Hξ in (1.1). This was known already to Herzberg and Longuet-
Higgins [1963], but most eloquently, it has been demonstrated by Berry [1984]. He
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Figure 1: R-C-H trinity systems with geometric phases.

modeled the two eigenstates of Hξ concretely as spin states | 12 ,± 1
2 〉, whose interaction

with magnetic field B = (B1, B2, B3) =: ξ is described by the linear Hamiltonian
B · Ŝ. This paradigm system has C-type matrix representation (1.1a) with 2 m = B1

and 2 h = B2 +iB3. Considering the C-bundle of eigenstates over any 2-sphere ∆ sur-
rounding ξ =0 in the parameter space R3

ξ , Berry defined a connection on this bundle,
now called commonly Berry curvature [Wilczek and Shapere, 1989], and demonstrated
how this connection contributed to the phase accumulated by the eigenfunction while
the latter was continued along cycles on ∆. The nontrivial contribution, or the geo-
metric phase, signals the presence of the degeneracy at 0∈R3

ξ . Simon [1983] observed
immediately that the associated curvature form is equivalent to the one used in the
computation of the first Chern number c1 of the bundle. This gives the complementary
topological characteristics of the degeneracy that we exploit in our work.

Shortly after the seminal introduction of the geometric phase to the broad physics
community by Berry [1984] and Simon [1983], important enhancements (fig. 1) were
initiated by Haldane [1988] and Pavlov-Verevkin et al. [1988], who suggested, on their
respective physical examples, quantum Hall effect and spin-orbital coupling, that the
formal Berry phase setup can be intrinsically extended, if we assume that (at least
some of) parameters ξ support an additional physical dynamical structure. In the midst
of numerous applications, experimental observations, and interpretations that followed
across very distant fields, from particle physics to classical waves, the simple “molecu-
lar” example [Pavlov-Verevkin et al., 1988] received no special appreciation. Attention
was shifted towards more complex quasi-continuous spectra and larger potential scope
of applications, notably in solid state. At the same time, the minimalism of [Pavlov-
Verevkin et al., 1988] suggests the existence of an elementary singularity of Hamilto-
nian dynamical slow-fast systems with nontrivial geometric phase, whose Chern index
can be manifested directly through its spectral flow. All other systems can be decom-
posed into families of such elementary singularities (sec. 3).

Another important development, the last but not the least to be mentioned, was the
quaternionic generalization (fig. 1) of the Berry C-system by Mead [1987] and Avron
et al. [1988, 1989]. In their physical examples with half-integer spins, they revealed
the particular Z2 symmetry making the eigenvalues of (1.1b) constitute two insepara-
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Quaternionic Dirac oscillator

2 Elementary Hamiltonian slow-fast singularities

ble Kramers doublets [Kramers, 1930, Wigner, 1932] as spin-reversal invariance1 TS .
Considering the C2-bundles which the doublets form over a sphere S4 ⊂ R5

ξ surround-
ing the degeneracy point 0, Avron et al. [1989] computed the second Chern number c2

characterizing the degeneracy at 0 in such TS-invariant quaternionic systems. This way,
they completed one of the most intriguing Arnold’s trinities [Arnold, 1997], see (8) in
[Arnold, 1999] and the left edge of the graph in fig. 1. They also computed another
fingerprint of the degeneracy, the non-Abelian geometric phase. While some physical
systems with such phase have been already investigated, up until now, it remained un-
clear what elementary Hamiltonian dynamical analogues of the quaternionic models in
[Mead, 1987, Avron et al., 1988, 1989] can be, and what quantum manifestations of
their nontrivial c2 index are. We aim at answering these fundamental questions (sec. 3)
and completing the dynamical triad in fig. 1.

2 Elementary Hamiltonian slow-fast singularities
Dynamically parameterized geometric phase systems have been reviewed recently in
ref. [Iwai et al., 2020]. We consider systems with minimal number of adiabatically
slow control parameters ξ, which equals the codimension of the degeneracy of the
eigenvalues λ of (1.1). Since in this case, the degeneracy occurs typically at an isolated
point in the parameter space Σ, we will place it in ξ =0, and work in its sufficiently
small regular neighbourhood Σ0. And finally, typical degeneracies are conical, with
nonvanishing derivatives ∂λ/∂ξ at ξ =0.

2a Formal and dynamical control parameters. Parameters of models by Berry [1984],
Mead [1987], and Avron et al. [1988, 1989], and of similar systems can be changed in
any imaginable/required way. We call such parameters and systems formal or gen-
eral. Parameters in the Hamiltonian dynamical analogues of these models are of two
kinds, formal α and dynamical (q, p). As their notation implies, the latter are canonical
dynamical variables of the slow Hamiltonian dynamical system, which can serve as
(local) coordinates on the slow classical phase space P . The total parameter space Σ
becomes a product of P and the space of formal parameters α (fig. 2). It is natural to

α

p

q

α< 0

α < 0

p

q

α = 0

p

q

α> 0

α > 0

Figure 2: Total parameter space Σ of an elementary C-system. The isolated degeneracy point 0
(red) of semi-quantum eigenvalues is surrounded by a sphere (yellow) which serves as the base
space of the fiber bundle ∆. In the H-case, the (q, p) plane and the sphere are four-dimensional.
Compare to sec. 2.3 and fig. 12 of appendix 4 in [Iwai et al., 2020].

consider maximally dynamical C and H-systems with α-space of minimal dimension
1While Mead [1987] and Avron et al. [1988, 1989] do not distinguish spin-reversal TS and time-reversal

T because they have no other dynamical variables than S, we do, see eqs. (2.2) and (2.3) in sec. 2.
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2 Elementary Hamiltonian slow-fast singularities

one and the number of slow degrees of freedom k equal to 1 and 2, respectively. The
maximally dynamical R system, or dynamical diabolic point system, has no formal pa-
rameter. It can be seen2 as a special member of the C-family with α =0. Furthermore,
working locally near 0∈Σ implies flat open geometry with a line of formal parameter
α and P a symplectic plane R2k.

2b Spin systems as fast subsystems. In the steps of Berry [1984] and Avron et al.
[1988], we will use states with half-integer fixed spin S to construct concretely the
respective two and four-level fast systems, and express the fast Hamiltonian in terms
of components (S1, S2, S3) of spin angular momentum S. Specifically, we interpret
(1.1b) in terms of the irreducible representation 3

2 of SU(2). While many physical
situations can be described effectively by a spin- 3

2 multiplet, there exists a different,
second realization of the quaternionic matrix (1.1b) using the fast basis of two spins,
or more precisely, of spin S and pseudo-spin S′, both of length 1

2 , i.e., the ( 1
2 , 1

2 )
representation of SU(2)×SU(2). This model was introduced by Mead [1987, 1992]
and Koizumi and Sugano [1995]. It has an additional first integral compensating the
extra fast degree of freedom, and to the degeneracy of its bulk levels, it is similar to
single-spin fast systems we analyze in this work.

2c Bands, superbands, bulk and edge states. The semi-quantum system with clas-
sical variables (q, p) and quantum operators Ŝ is the dynamical equivalent of formal
models by Berry [1984] and Avron et al. [1988, 1989]. Its quantum and classical
limits (fig. 1, far end, left and right) retain α as their sole control parameter. This
system has relatively few eigenvalues λb : Σ→R, b∈N. In H-systems, we use b to
label Kramers-degenerate doublets of their semi-quantum eigenvalues. In the quantum
limit, dynamical parameters become quantum operators (q̂, p̂), and eigenvalues λb turn
into bands in C-systems and Kramers degenerate superbands in H-systems contain-
ing many discrete eigenstates. Commonly, at noncritical values of α, (super)bands are
imagined as dense multiplets separated from each other by large energy gaps, i.e., the
splittings within (super)bands are typically much smaller than those gaps. We like to
stress that neither C nor H-systems are invariant under time-reversal symmetry T , and
there are no specific degeneracies of their quantum levels. As we discuss further below,
the presence of T incurs specific modifications of these elementary systems.

Observing the spectral flow, or the number of states transferred between (super)bands
when α varies through the critical value α =0 corresponding to the semi-quantum
eigenvalue degeneracy, one discovers that it equals the Chern number ck(∆). The
states remaining within their (super)bands and those few being transferred are called
bulk and edge, respectively. This terminology reflects the correspondence to more
complex models in solid state, see [Iwai et al., 2020] and references therein. The
classical limit is described by the one-parameter family of Hamiltonian equations of
motion, which govern the evolution of both fast S and slow (q, p) dynamical variables.
For C-systems, this limit is related to Hamiltonian monodromy [Sadovskiı́ and Zhilin-
skiı́, 1999], and, consequently, to the A1 singularity [Sadovskiı́, 2016]. In this letter,
we focus on the quantum limit of the H-systems (fig. 1).

2d Conical symmetry. The most specific and important property of elementary Ha-
miltonian slow-fast singularities is their (local) conical dynamical symmetry SO(2). It
originates in the fact that the degeneracy occurs at an isolated point, such as q =p =0
for α =0. Concretely, we will consider simultaneous rotations of spin S about axis S1

2Explicitly, note that matrix (1.1a) with m = 0 and h = q + i p, which is the member of the C-family,
and real matrix (1.1a) with m = q and h =−p are conjugated under rotation S 7→ (S2, S3, S1).
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2 Elementary Hamiltonian slow-fast singularities

and phase space rotations of P = R2k generated by the flow of slow harmonic oscillator
action I . In other words, our conical symmetry has momentum

J = S1 + I. (2.1)

J is first integral of the classical system, and its quantum analogue Ĵ commutes with
quantum Hamiltonian Ĥα. The concrete choice of function I : P → R will be jus-
tified later in sec. 3. We draw attention to two qualitatively different possibilities in
H-systems. Depending on the signs of oscillator frequencies, the image of I (and,
consequently, J) can be either unbound or bound on one side.

2e Spin-reversal. No additional Lie symmetries should normally exist. We call spin-
reversal the specific discrete symmetry operation

TS : (S, α, q,p) 7→ (−S, α, q,p), (2.2)

which is inherent to all H-systems (sec. 1), and reserve time-reversal for operation

T : (S, α, q,p) 7→ (−S, α, q,−p). (2.3)

The latter acts on all dynamical variables, and its presence is not essential. Additional
invariance3 under T is irrelevant to bands becoming degenerate. If T is present along-
side TS , the slow-reversal T ◦TS makes the intersection at q = p =0 non-linear.

(a)

upper bulk states

lower bulk states

b

b a

a

tr
iv

ia
ll

im
it

reciprocaltriviallim
it

α < 0 α > 0

0 α

single edge state

ck =−1

ck =+1

(b)

v=1
v=5

v=0

−3 −2 −1 0 1 2 3
Formal control parameter α

−
3
−

2
−

1
0

1
2

3

E
ne

rg
y

H
α

|S,−
S 〉|0〉

Figure 3: Correlation diagram (a) and spectrum (b) of the elementary C and H systems with
spin- 1

2
Dirac oscillator Hamiltonian (3.2a) and 1:1:2-resonant spin- 3

2
quaternionic oscillator

Hamiltonian (3.4), respectively. Bulk parts of (super)bands (a) and individual bulk states (b)
of multiplicity 1 and v in the 1:1 and in the 1:1:2 system with r = 2, respectively, are distin-
guished by solid blue-green lines. Solid red line represents the edge state. Light shade in (b)
marks the image of the semi-quantum eigenvalues, and only levels with v≤ 5 are displayed.

2f Trivial limits and correlation diagram. Any slow-fast system has two simple un-
coupled or trivial reciprocal limits in which its fast and slow subsystems do not inter-
act, and which are related to each other through energy reversal. Considering individ-
ual quantum eigenstates, we realize that some are unique and have to be redistributed

3The study of additional symmetries acting on slow variables requires further concretisation. We con-
sider the slow subsystem locally as merely an abstract oscillator and analyze the most generic phenomenon.
On the other hand, this subsystem can be a linearisation of a physical system with specific symmetries.
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2 Elementary Hamiltonian slow-fast singularities

in order for the (super)band spectrum of the trivial limit to get reversed. In a con-
tinuous one-parameter family of systems connecting the two limits, this redistribution
occurs only when its semi-quantum eigenvalues become degenerate. In elementary sys-
tems, the degeneracy is of the kind described above, and is characterized by the Chern
number ck(∆), cf. sec. 1. Following individual eigenvalues of quantum Hamiltonians
Hα(Ŝ, q̂, p̂) as functions of formal parameter α, we compute the spectral flow4. The
results can be represented as a correlation diagram, such as the one in fig. 3a. It is our
conjectured theorem that, to a sign convention, the thus obtained spectral flow for each
(super)band b equals ck(∆b).

(a)

. . .

0

oscillator states

Ix

. . .

. . .

0

bulk states

S1 + Ix

×
∣∣+ 1

2

〉×
∣∣−1

2

〉

~

(b)

0 Ix+2Iy

1:2 oscillator states

~

1 2 3 4 5 6 7 8 . . .

|S1|= 1
2

0

|S1|= 3
2

1

1:1:2 bulk states

0 S1+Ix+2Iy

× ∣∣+
12 〉

× ∣∣− 1
2
〉

×
∣∣+3

2

〉×
∣ ∣ −3 2

〉

Figure 4: Uncoupled bases of (a) the two-band Dirac oscillator with S = 1
2

, and (b) the 1:1:2-
resonant quaternionic Dirac oscillator with S = 3

2
truncated at sufficiently large values of conical

momentum j. Filled circles represent bulk (black) and edge (red) states; bulk state numbers
v = j + S are indicated for the lower superband of (b); the number of edge states is given in
bold large red digits. See text for the explanation of the vertical axis in (b).

2g Spectral flow and Chern numbers. The conical SO(2) symmetry persists for all
values of formal control parameter α and defines completely the distribution of the
eigenstates in each (super)band over the irreducible representations of SO(2). In this
aspect, SO(2) defines the structure of (super)bands and its modification, which occurs

4Unlike Atiyah and Singer [1968], we define spectral flows for each (super)band λb, and not just one
flow for the entire system. In elementary C and H systems (sec. 2), where one single level transfers between
two (super)bands, the spectral flow equals, to a sign, the topological charge 1: one band looses a state and
has the flow of −1, while the other gets necessarily the flow of +1. Our detailisation becomes important in
large-spin systems (sec. 3 and fig. 5b), where we consider many (super)bands with Chern numbers ck(∆b).
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2 Elementary Hamiltonian slow-fast singularities

after crossing the degeneracy point in the α-space. We denote quantum numbers of
quantized momenta Ĵ , Ŝ1, and Î as j, S1, and n. The C-systems possess a one-di-
mensional oscillator slow subsystem with (q, p) = (x, px), and I equals (to a sign) the
standard harmonic oscillator action Ix (sec. 3). The 1:(±1)-weighted SO(2) symme-
tries are related by slow momentum reversal, and it suffices to understand the case of
1:1. The trivial eigenbasis of the spin-oscillator is the direct product of the 2S +1-
dimensional space of spin functions |S, S1〉 and the “slow” Hilbert space of oscillator
functions |n〉. In order to classify these states according to quantum number j of mo-
mentum (2.1), we shift the N0 lattice of oscillator states by S1. In the two-band system
with spin 1

2 (fig. 4a), each band contains one state for every j >− 1
2 , while the state

| 12 ,− 1
2 〉|0〉 with minimal j =− 1

2 (red dot) has no counterpart. When the spectrum
of the two trivial bands gets reversed, this state is redistributed. Assuming that the
described trivial limit and its reciprocal correspond to large negative and positive α,
respectively, the spectral flow (cf. footnote 4) for individual bands b =1 (upper) and
b =2 (lower) equals −1 and +1. In the elementary C-system, these limits are con-
nected so that the corresponding Chern numbers c1(∆b) are equal to +1 and −1. The
signs are fixed through the standard choice of matrix (1.1a) and of the corresponding
Hamiltonian (3.2) in sec. 3.

H-systems include a two-dimensional slow oscillator with dynamical variables
(x, y, px, py), and their I equals (to a sign) Ix ± 2 Iy (sec. 3). In order to explain the
spectrum flow calculation, we consider first the two-superband system with weights
1:1:2 and spin 3

2 (fig. 4b). Other cases are addressed later in sec. 3. The construction
of the trivial-limit lattice of 1:2-oscillator states requires an additional first integral to
serve as “height function” in fig. 4b. Locally, sufficiently near (q,p) = 0, we can use Iy

and represent the lattice within a wedge, whose upper bound is given by the 1:2-sloped
step-function (fig. 4b, left). The latter represents the total number of oscillator states
with given value n of quantized 1:2-action I . We proceed similarly to the C case in
fig. 4a, albeit now, we take the invariance under spin-reversal (2.2) into account and
include all states with the same |S1| in one trivial superband (fig. 4b, right). We ob-
serve immediately that the system has a single edge state with j =− 3

2 , and therefore,
by the above-mentioned conjectured theorem, its superbands have c2(∆) equal to ±1
(fig. 3a).

It follows that elementary C and H-systems have the same correlation diagram
(fig. 3a) and topological charge |ck(∆)|=1. We also uncover the nature of the edge
states (colored red in fig. 3 and 4), called so not only because of their transfer be-
tween bands [Iwai et al., 2020]. Their correspondence to the edge states in solids
goes well beyond the mere fact that they participate in the spectral flow. These states
have very specific strong localization. They are centered maximally at the degeneracy
point q = p =0 of the semi-quantum eigenvalues in the slow phase space P . We can
think of them as “vortex states”, which have, unlike bulk states, no easy classical and
semi-classical description on P . In the 1:(±1) and 1:(±1):(±2)-systems, they are also
highly localized in the fast (spin) variables near S = (∓S, 0, 0). Fast localization of
the missing states (sec. 3) of the 1:(±1):(∓2)-systems is different. Having minimal
|S1|= 1

2 , they can be seen as “near-equatorial”.
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3 Dirac oscillators

3 Dirac oscillators
Replacing elements m, h, and h∗ of (1.1a) by α∈R and complex dynamical variables

a† = a+ :=
q − ip√

2
= z̄/

√
2 and a = a− :=

q + ip√
2

= z/
√

2 (3.1)

defines the semi-quantum matrix Hamiltonian

Hα(q, p) = Hα(x, px) = α

(
−1 0

0 1

)
+
(

0 a†

a 0

)
(3.2a)

of the elementary C-system with semi-quantum energies±
√

α2 + Ix [Iwai et al., 2020]
known as Dirac oscillator [Moshinsky and Szczepaniak, 1989]. Using basis spin func-
tions | 12 ,− 1

2 〉 and | 12 ,+ 1
2 〉 turns (3.2a) into a spin-oscillator Hamiltonian

Hα(Ŝ, x, px) = α
Ŝ1

S
+

Ŝ+ a + Ŝ− a†

2 S
with Ix = 1

2 (x2 + p2
x), (3.2b)

which has 1:1-weighted conical symmetry SO(2) and I = Ix. It represents slow-fast
resonance 1:1. Its isospectral 1:(−1) sibling with I =−Ix is produced from (3.2b)
under slow momentum reversal T ◦ TS .

Dynamical parameterization of the quaternionic matrix (1.1b) is defined similarly.
In the concrete fast “canonical” spin- 3

2 basis of [Avron et al., 1989, eq. (2.26), Defini-
tion 2.5, p. 605],

| 32 , 3
2 〉, |

3
2 ,− 3

2 〉, |
3
2 ,− 1

2 〉, |
3
2 , 1

2 〉, (3.3)

matrix elements 〈 3
2 ,+S1|H| 32 ,−S1〉 of any TS-invariant operator H vanish, mak-

ing diagonal 2×2 blocks ±m real, while the off-diagonal 2×2 block h has elements
〈 3
2 ,± 1

2 |H|
3
2 ,± 3

2 〉 and 〈 3
2 ,± 3

2 |H|
3
2 ,∓ 1

2 〉 representing ∆S1 =1 and 2 interactions. Our
formal parameter goes on the diagonal m =α1, while h is parameterized linearly by
dynamical variables (x, y, px, py) in TR2

x,y . Associating the interactions with x and
y-oscillations, we obtain respective slow-fast resonances 1:1 and 1:(±2). Therefore,
the dynamical anologue of the system by Avron et al. [1988, 1989] is a TS-invariant
1:1:(±2)-resonant Dirac oscillator. Specifically, consider the cubic Hamiltonian

H1:1:2
α (S, q,p) =

3
4 S2

[
H0

α(S) + H1(S, x, px) +
√

r H2(S, y, py)
]
, (3.4a)

whose fixed internal parameter r > 0 balances the 1:1 and 1:2 resonances. The value
of r is important to the internal structure of quantum superbands associated with the
semi-quantum eigenvalues λb of (3.4a); it does not affect the conical intersection of λ’s,
the spectral flow, and the Chern numbers c2(∆b). We focus on the special resonance-
matching case of r =2. In the spin- 3

2 basis (3.3),

H0
α(S) = α

(
S2 − 3 S2

1

)
= −

√
6 T 2

0 , (3.4b)

H1(S, x, px) =
√

3
2

([
S1, S+

]
+
ax +

[
S1, S−

]
+
a†x

)
, (3.4c)

and H2(S, y, py) =
√

3
2
(
S2

+ ay + S2
− a†y

)
(3.4d)
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3 Dirac oscillators

define ∆S =0, 1, and 2 elements5 of the quaternionic semi-quantum matrix (1.1b)(
−α1 h

h† α1

)
with h(q,p) =

(√
r ay ax

−a†x
√

r a†y

)
. (3.5)

For r =2, the multiplicity-2 eigenvalues of this matrix

±
√

α2 + Ix + r Iy
r=2−−→ ±

√
α2 + I

depend only on the principal (or polyad) action

I = Ix + 2 Iy ≥ 0 (3.6)

of slow 1:2-resonant oscillations in (x, y). Since 1-oscillator actions Ix,y quantize as
nx,y + 1

2 , we quantize I as n + 3
2 , with nx, ny, n ∈ N0. We notice that, to the new

meaning of I and multiplicity, the semi-quantum eigenvalues of the 1:1-resonant (orig-
inal) Dirac oscillator Hamiltonian (3.2b) and the 1:1:2 spin-oscillator Hamiltonian (3.4)
are identical. Furthermore, slow momentum conjugations of (3.4) produce resonances
1:(±1):(±2). Of these, 1:1:(−2) with unbound I is obtained through py 7→ −py and
merits special consideration below.

Quantum spectra of the two-(super)band 1:1 and 1:1:(±2) systems (fig. 3b) can be
easily computed because their Hamiltonians squared are diagonal. So taking the square
of Hamiltonian (3.4)

H2
α

∣∣
r=2

= α21 + diag(n̂ + 3, n̂, n̂ + 1, n̂ + 2) with n̂ = Î − 3
2 ,

we realize that these spectra are essentially the same. Specifically, while all 1:1-levels
are nondegenerate, bulk levels of the 1:1:2 system with r =2 have multiplicity v ∈N.

It is instructive to consider non-elementary systems with Hamiltonian (3.4) and
large half-integer spins S > 3

2 . Their bands b = 1 . . . S + 1
2 have a complicated isolated

degeneracy in 0, which can be deformed into a “constellation” of elementary ones.
This degeneracy is characterized by Chern numbers in theorem 6.3 of [Avron et al.,
1989, Sadun and Segert, 1989], which we denote c2(∆S

b) or c2

(
∆S

|S1|
)

with |S1| =
1
2 , 3

2 , . . . , S and b = |S1|+ 1
2 . We uncover how these numbers replicate the spectral

flow. First, we improve the construction in fig. 4b by flipping its negative-S1 part and
fitting all bulk states within a convex wedge domain (of 2 arctan 1

2
∼ 53◦, shaded blue

in fig. 5a). Explicitly, this can be achieved through height function

F (Ŝ, q,p) = − sin(πS1)
(

S1

2
+ ny +

1
2

)
. (3.7)

Here we notice that for half-integer S, the front factor

sin(πS1) = (−1)|S1|−
1
2 sign(S1)

takes values ±1, and for all even b, it flips the lattice additionally about the median.
This property of F is displayed by the alternating shade pattern in fig. 5b. Furthermore,

5Normally, we do not have to distinguish quantum and classical definitions, but (3.4c) requires an ex-
plicit quantum-specific expression with anti-commutator u v + v u denoted as [u, v]+. Traceless quadratic
spin operators in (3.4) are components of spherical tensor T 2(S) [Zare, 1988, chap. 5, appendix 13] cor-
responding to unit spin-quadrupoles Q0...4 in [Avron et al., 1989, eqs. (3.1)–(3.3) and proposition 3.6].
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3 Dirac oscillators

(a)

1
2

3
4

5
6

. . .

v =

|S1|= 1
2

0

|S1|= 3
2

1

|S1|= 5
2

3

|S1|= 7
2

6

1:1:2 bulk states

0 S1+Ix+2Iy (b)

v = −3−2−1 0 1 2 3 . . .

|S1|= 1
2

0

|S1|= 3
2

–1

|S1|= 5
2

–3

|S1|= 7
2

–6

1:1:−2 bulk states

0S1+Ix−2Iy

Figure 5: Trivial (uncoupled) bases of the 1:1:2 (a) and 1:1:−2 (b) resonant large-spin Dirac
oscillators for α < 0. Red solid and opaque circles mark surplus and missing states, whose
numbers are indicated in bold large red digits. The vertical axis can be given explicitly by (3.7).

columns (a) and (b) in fig. 5 can be seen as representing S1-slices of the 3-dimensional
lattices of the respective joint eigenspectra of (S1, J, F ). We observe that the structure
of superbands depends on |S1| and does not depend on S, and that all bulk wedges in
fig. 5a are identical. The two 1:2-oscillator lattices (fig. 4b) form superbands in such a
way that these wedges have straight boundaries. Compared to the |S1|= 1

2 superband,
larger-|S1| superbands possess surplus states outside the wedges (red dots in fig. 5a).
The spectral flow equals the difference of the surplus state numbers (bold red numbers
in fig. 5a) in the reciprocal superbands and matches exactly the Chern number

c2

(
∆S

|S1|
)

= vS

(vS

2
− |S1|

)
with vS =

2 S + 1
2

,

which was computed in [Avron et al., 1989, Sadun and Segert, 1989]. So indices c2 of
superbands 7

2
↔ 1

2 and 5
2
↔ 3

2 for S = 7
2 are read out from fig. 5a as 6− 0 and 3− 1.
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4 Discussion of the results

The matching between the spectral flow and Chern indices is beyond any doubt.
Turning to the 1:1:(−2) lattice (fig. 5b), we construct it explicitly using the same

height function, and observe its complementarity to 1:1:2 after identifying the wedged
boundaries on each row of fig. 5 and uniting the two jigsaw puzzle pieces into Z2. The
1:1:(−2) lattice is wholly unbound, with large-|S1| slices having missing states (holes).
The spectral flow and the c2 indices are minus those in the 1:1:2-system.

Although the simultaneous crossing of more than two eigenvalues in large-spin
elementary C and H systems (with S > 1

2 and half-integer S > 3
2 , respectively) is

not generic for the number of available parameters (both formal and dynamical), it can
be deformed continuously, or unfolded into a sequence of elementary degeneracies
involving pairs of neighboring (super)bands and being associated with the transfer of
a single quantum state between the two neighbours. For the given trivial limit, this
can be done in several ways. However, the minimal number NS of elementary systems
required for the unfolding is well defined and can be rather simply calculated. It suffices
to count all states that we need to transfer between neighboring (super)bands in the
same energy axis sense in order to arrive at the reciprocal limit. In this way, we find

type spin (super)bands topological charge

C S ≥ 1
2 vS = 2S + 1 NS = vS (v2

S − 1)/6
H S ≥ 3

2 vS = S + 1
2 NS = v2

S (v2
S − 1)/12,

where vS is the number of (super)bands and NS is a topological invariant, which can
be regarded as a generalization of the elementary topological charge 1 in sec. 2.

4 Discussion of the results
Our main question (sec. 1) about the dynamical equivalent of the spin-quadrupole sys-
tem of Avron et al. [1988, 1989] and the dynamical triad completion (fig. 1) received
a canonically clear and simple answer. The significance of this result transcends our
concrete purpose. We demonstrate that classical, semi-quantum, and quantum lim-
its of slow-fast Hamiltonian dynamical systems can be analyzed in terms of basic el-
ementary R-C-H forms, whose role is similar to those in the bifurcation theory or
the singularity classification in complex geometry. Uncovering the mathematics of
the quantum slow-fast singularities, we finalize our understanding of the fundamental
physical phenomenon of the energy level redistribution between energy level bands.
In the spirit of Simon [1983], we consider Chern numbers ck(∆) describing the ∆-
bundles (fig. 2) of semi-quantum eigenstates, and uncover their relation to the spectral
flow. The analysis of isolated point degeneracies of semi-quantum (symbolic) systems
in their multi-parameter space Σ becomes equivalent in the quantum limit to counting
solutions (edge states) of corresponding one-parameter families of systems of elliptic
linear partial differential equations being transferred between bands (of bulk states).
The universality of this approach has been apprised in many different fields [Volovik,
2009, Delplace, 2022], see also sec. 3 in [Faure, 2022], where a “topological normal
form” for molecules is introduced, and the number of the redistributed energy levels
is related to the Chern number. It should be placed next to two other groups of re-
sults in the literature: (i) the “folk” theorems “Fredholm index = spectral flow” for
rather general families of self-adjoint operators on Hilbert spaces [Atiyah et al., 1976,
Robbin and Salamon, 1995], and (ii) the index theorems “Fredholm index = Bott in-
dex”, see [Atiyah, 1967, 1968], [Higson and Roe, 2008], and chapt. 11 in [Bleecker
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4 Discussion of the results

and Booß-Bavnbek, 2013], or “Fredholm index = Chern number ck(Λ)” if the slow
phase space P is compact (see [Atiyah and Singer, 1968, Atiyah et al., 1975a,b, 1976]
or chapt. 12 in [Bleecker and Booß-Bavnbek, 2013]) and we can describe the spectral
flow using topological invariants of individual “bands” or Λ-bundles of semi-quantum
eigenstates over P at non-critical values of formal parameter α 6=0, cf. sec. 1.2 of [Iwai
et al., 2020].

In the compact setup, the space of formal parameter(s) α is divided by the de-
generacy set of the semi-quantum eigenvalues (the slow-fast singularity) into regular
iso-Chern domains, each described by its own set of numbers ck(Λb), for which ck(∆b)
play the role of “delta-Chern” numbers reflecting changes occurring in ck(Λb) when we
cross between the domains. The recent quaternionic example on compact P = S2×S2

[Sadovskiı́ and Zhilinskiı́, 2022] generalizes the original spin-orbit system [Pavlov-
Verevkin et al., 1988] with P = S2 and combines all four local elementary slow-fast
resonances 1:(±1):(±2), which we describe in this work, into a single one-parameter
family of physical systems. Presentation-wise, the quaternionic spin-orbit example
with S = 3

2 in [Sadovskiı́ and Zhilinskiı́, 2022] should be considered as a sequel to the
present work. It describes a more physical model with bounded energies and finite
numbers of states in the superbands. The discussion of elementary phenomena and un-
derlying mathematics is inadvertently reduced in favor of the specific features of that
model system.

We surveyed several decades of research on quantum systems exhibiting redistribu-
tion of states between bands of slow-fast systems. This work advanced along several in-
terconnected directions culminating with the model quaternionic dynamical two-band
system. Its results and implications can be grouped in the following way.

1. The concept of elementary (maximally) dynamically parameterized slow-fast
singularities, their correspondence to the paradigm systems with geometric pha-
ses, and their R-C-H classification (“Arnold’s trinity”), see sec. 2.

2. The specific universal local form of elementary H-systems, see sec. 3.

3. The first analysis of the rearrangement of quantum states in the quaternionic
slow-fast dynamical system based on this model.

4. The conjecture and convincing demonstration of the theorem relating this rear-
rangement and the Chern index of the semi-quantum eigenvalue crossing.

5. The consequences and importance to physics, to classical mechanics, singularity
theory, and index theories for partial differential equations.

In conclusion, a theorem is typically a highly nontrivial statement, and one should
be well aware of what it is worth before engaging in its formal proofs. We made
sure that (i) it is indeed substantial and nontrivial; (ii) there is an informal proof, or
a demonstration; (iii) it is of importance to applications in other fields (physics); and
we provided ample evidence that (iv) it is important to mathematical theory. There is
a large number of mathematical papers discussing “bulk-edge” correspondence across
many models associated with topological effects in various physical situations. The
physical concept of slow-fast separation is paralleled in the theory of (elliptic) par-
tial differential equations by the fundamental idea of the symbol of the equation. By
formulating the relation between the spectral flow and Chern indices in the physical
elementary slow-fast system as a theorem, we like to bring attention to this important
mathematical fact. We anticipate further interest by the experts in index theories, who
can, if necessary, develop our statements and provide general proofs.
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