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NONRIGID ~OLECUIXS WITR SEVERAL LARG~AMPLITUDR COORDINATES 

B.I.Zhilinskii 

Department of Chemistry, Moscow State University, Moscow 117 234 USSR 

The vibration-rotation problem of inorganic molecules composed 

of a rigid core and one or two atoms which display almost free motion 

around this core is discussed. Such molecules as LiCN, LiRR4, TlN03, 

LiR02, ArN2, X2S04 are appropriate examples, The nonempirical method 

is proposed which uses the ab initio potential surface and treats 

two internal coordinates as corresponding to large-amplitude ones. 

The variational method is used to calculate the vibration-rotation 

energy levels and wavefunctions. Some features of the microwave 

spectrum of nonrigid inorganic molecules is qualitatively explained 

on the basis of simple semiempirical method, using the-topological 

structure of the potential surface. 

INTRODUCTION 

Inorganic chemistry provides a number of molecules which cannot 

be properly described by a well-known rigid model. The nonrigid 

(ref. 1) or semirigid models (refs. 2.3) must be applied to calculate 
the structure and the vibration-rotation spectra of such molecules. 

Only one type of nonrigid molecules with several large-amplitude 

coordinates will be discussed here. These are the molecules composed 

of a rigid core and one or two atoms which move almost freely around 

this core, Such molecules as LiCN, LiBo2, LiBR4, K2S04, TlN03 are 

appropriate examples (ref. 4). To obtain good quantitative descrip- 

tion of the vibration-rotation spectra the nonempirical variational 

method is proposed which is applicable to simple triatomic molecules 

with known potential surface. To explain the qualitative features 

of the vibration-rotation spectra for more complex molecules such 

as LiRH4, -O39 92 SO the simple semiempirical method is proposed 4 
which uses only the topological structurk of the potential surface 

for large-amplitude motion. 



184 

QlJANTITA2IVE MEX!EIOD 

We develop the variational method for calculation the vibration- 

rotation levels of a triatomic system with a diatomic rigid core. 

We suppose first the fulfillment of the adiabatic approximation then 

separate the center of mass of the system and introduce a body--fixed 

frame, connected only with the diatomic fragment (ref. 5). The loca- 

tion of the atom with respect to the diatomic core is characterized 

by two large-amplitude coordinates, r, 6 (Fig. I), To construct the 

effective nonrigid Hsmiltonian with two internal degrees of freedom 

we average the total Hamiltonian with the vibrational function depen- 

ding on R. The resulting Hamiltonian depends on r and 8 as well 

as on the external variables IO,, @,,)o 

Here L+ = Lx 2 i.Ly, Lx, Ly, Ls are components of the angular momentum 

operat& for the particle associated with vector z, P is a momentum 

operator for the particle associated with vector 5. The operators 

L and P are identified in the body-fixed system. J is the total orbf- 

tal angular momentum for the three particle problem. V(r,6) is the 

potential integrated over the 

R, is some effective value of 

We construct the basis for 

R-dependent vibrational function. 

R. 

the variational calculation by prelimi- 

Fig. I, Coordinates for triatomic molecule of the LiNC type. The 
point 0 is situated in the center of mass of the rigid core, 



nary crude separytion of variables in the Hamiltonian (I), In the 

first step we introduce two auxiliary Hamiltonians Hr and Ha 

The motion over the r variable is supposed to be close to ro, while 

V,(r) and Vs (8) are effective potentials obtained in some way 

from the total potential, 

The multiplication of the eigenfunctions of the operators (2) 

and (3) provides the basis for the calculation of the eiganvalues 

of operator (1). This basis gives the possibilfty of analytical 

evaluation of all matrix elements. The approach described above was 

used for vibration--rotation level calculation of the LiGN and KCN 

molecules, The results of such model calculations are now published 

in J.Mol.Spectrosc. (ref. 5). So I shall further discuss the semi- 

empirical qualitative method. 

Consider such ionic molecules as LiEE4, !PlS303, InInC3.4, X2S04 

etc. The impoxkant peculiarity of these molecules is the existance 

of several equilibrium equivalent sites of external atom with 

respect to the rigid core. Moreover the external atom possesses 

large-amplitude motion whereas the rigid core possesses only the 

small vibrations. Quantum mechanical calculations (ref. 6,7), spectro- 

scopic (ref. 8) and electron diffraction data (ref. 4) confirm this 

statement. 

Let ABC4 be the molecule with the rigid tetrahedral core Znr,, 

The potential surface for the atom A motion around EC4 core 

qualitatively may be described, for example, as follows, The location 

of atom A over the center of the side corresponds to the minimum 

of the potential enerw surface. The locations of atom A over the 

apices of the tetrahedron and over the middle of the edges correspond 

respectively to the maxima and the saddle points of the potential 
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2. One-dimensional graph representing the potential energy sur- 
for the atom A motion around the rigid IX4 tetrahedron in the 
type molecules. 

energy surface, Such structure of the potential energy surface is 

obtained for the IME molecule (ref. 6). A simple one-dimensional 

graph may be used as a model for such potential surface. The verteces 

of this graph correspond to the minima of the potential and the edges 

connect those verteces between which there is a saddle point (Fig. 2). 

Now we introduce the effective Hamiltonian Heff which describes the 

motion of a particle in the one-dimensional graph, To obtain the 

eigenfunctions and eigenvalues of this effective Hamiltonian we use 

the variational method with the trial functions corresponding to 

the states localised in the minima. Thus for A33X4 molecule we have 

four functions and two types of matrix elements 

The solution of a simple secular equation 

fields the energy levels 

*?,2,3 = o( -/3 , 

qpQ(+3/3. 
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Pig. 3. One-dimensional graph, matrix form of the Hamiltonian and 
the energy splitting for the M atom motion around NX rigid core 
in the MNX type molecules. The energy levels are laselled according 
to the irr$ducible representations of the symmetry group of the 
rigid COIX /D,,/. 

We can simplify the problem using the symmetry arguments. If the 

functions $ transform according to the irreducible representation 

A1 of the local symmetry group (3% the resulting molecular func- 
tions transform as A, + P2 irreducible representations of Td 

group. The type of energy level splitting due to the large-amplitude 

motion is fully described by the topological structure of the 

molecular graph mentioned above /i.e. by the parameter J3 under 

the assumptions of the simple molecular orbital theory/. The same 

technique may be succesfully applied to other molecules. We present 

here the energy level splitting for MNX3 type molecules (Fig. 3). 
In this case three different matrix elements are to be used. 

If the molecule consists of two atoms and a rigid core, as in 

the case of &LSO4, six functions y,2, yq3, 9,4, y23V 924, 

9 *, are to be used. The function 9 i3 describes the two-particle 
state with the particles localized in the minima i end j. For example 

we have the following energy levels for two particles in the one- 

dimensional tetrahedral graph /the model for K2S04 molecule/. 

E1 = 2cL+4J3, 
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E2,3,4 = 2d * 

*5,6 
= 2& - 2J3. 

In this case we can constzuct the wavefunctions with proper spatial 

and permutational symmetry. The quantitative evaluation of the pare- 

meter _F strictly depends on the magnitude and the shape of the 

potential, and thus we cannot predict any reliable values. 
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