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Reduced Hamiltonian for 0100 and 0001 Interacting States of 
Tetrahedral XY4 Molecules: Calculated r2J2 and r2J3-Type 

Parameters for v2 and v4 Bands of Methane’ 
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Ambiguity of the effective Hamiltonian for the interacting E and F2 states of tetrahedral 
XY4 molecules was studied. Unitary transformations to yield a reduced form of the Hamiltonian 
were suggested. the latter including only empirically determinable parameters. The r2JZ and 
r2J3-type spectroscopic parameters for the 000 I and 0 100 dyad of CH4 molecule were calculated 
by means of contact transformations. It was shown that sets of spectroscopic parameters 
derived by several authors for the interacting u2 and v4 bands of CH4 and SiH4 may be related 
via certain unitary transformations. c: 1985 Academic Press. Inc. 

1. INTRODUCTION 

It has already been shown (I, 2) that most high-order parameters of the effective 
Hamiltonians, Pff, for the degenerate vibrational states of spherical top molecules 
cannot be interpreted as spectroscopic constants. For example, there is one “degree 
of freedom” in the set of the four r2J4-type parameters for a triply degenerate 
isolated F2 state. The similar situation occurs for the r2J7 parameters of the isolated 
E state. The ambiguity is more pronounced in the case where resonating states are 
analyzed simultaneously. It is found that all the r2J2- and r2J3- type parameters 
and most other high-order parameters of the effective Hamiltonian for the tetrahedral 
XY4 molecules cannot be unambiguously determined from experimental spectra. 
The ambiguity is caused by the fact that although .Zeff subjected to unitary 
transformations does retain its initial form and eigenvalues, it nevertheless leads to 
considerable changes in the adjusted parameters. 

In this paper the 0 100 and 000 1 interacting states of the tetrahedral XY4 molecules 
are treated in more detail. 

Sections 3-6 discuss the ambiguous character of the effective Hamiltonian for the 
v2-v4 dyad under small unitary transformations. Then the unitary transformation of 
PK which inverts the signs of interaction operators is considered (Section 7). 
Furthermore, the relations derived are used to explain the pronounced discrepancies 
between the parameters for v2 and v4 interacting bands fitted by different authors 
for CH4 and SiH4 molecules (Section 8). In Section 9 r2J2- and r3J3-type parameters 
for the v2 and v4 interacting bands of methane are calculated using the anharmonic 
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force field of Gray and Robiette (3) and the formulas of our previous paper (4). It 

is emphasized that the correct comparison of the calculated and fitted parameters 
is possible on the basis of relations derived in this paper. Finally, in Section 10 the 

reduced effective Hamiltonian is suggested. The awkward ambiguity in the parameters 
of the interacting states can be avoided by the use of this effective Hamiltonian. 

2. EFFECTIVE HAMILTONIAN 

The effective Hamiltonian is represented in terms of irreducible tensor operators 
of the Td point group (5, 6). For the 0100 and 0001 interacting states it may be 
written as 

where 

(1) 

TqAr.nr)r$rX, = 
s.s ( 

(-l)KVrsrs.(r) X Rri(iX%-) Al s.s ) . (2) 

It should be noted that the notations introduced in Ref. (6) will be used throughout 
the paper. The tensor operator, T”(O+“)rr, has the form 

(3) 

Effective Hamiltonian (1) also contributes to the energy levels of some overtone 
and combination vibrational states. In this paper, we consider the effective Hamil- 
tonian up to the third-order terms. This theoretical model was used by Pierre et 

al. (7). 

3. AMBIGUITY OF EFFECTIVE HAMILTONIAN 

The ambiguity of an effective Hamiltonian is due to the existence 
unitary transformations 

&= . . - exp(iQZ exp( -iS) - - - 

= A? + [is, &%-“I + ; [is, [is, F]] + * * * 

which change the coefficients rather than the operators included in 

of small real 

(4) 

the effective 

Hamiltonian. For Hamiltonian (1) there are two possible types of transformations 
(4). These include transformations having diagonal generators (2) 

an(K,nr)r,r, = 
-V 

Sn(K,nr)r,r, (-I)K-~ Vr,r,(r) X Rq.qnr) A, 
s.s ( s.s ) (5) 

and nondiagonal transformations 

a;!pflr)EF2 = s2 4 n(K,nr)EF (-IF-1 vfg(r) X RncK,nr) ..il ( ) (6) 

which appear to be more important. Possible generators up to the sixth power in 
the angular momentum are presented in Table I. The ambiguity of the effective 
Hamiltonian used by Pierre et al. (7) is due to the parameters of the S generator 
marked with dotted line. 
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TABLE I 

Independent Parameters of S-Generator up to Sixth Power in Angular Momentum 
~ _ 

V2 u4 vz- v4 - Interaction 

R (K.I-) R (K, I’ ) 

5(5&l 3(3,F2) 

6(6,~~) 4(4,F, 1 

5(3,F2) 

515,E) 

5(5,F2) 

6(4,F, 1 

6(6,F,) 

R (K,nr) 

5(3rF2) 

5(5,0F,) 

5(5,1F,) 

5(5,P21 

6(2,~2) 

4(2,F2) 6(4,~,) 

4(4,F,) 6(4,~2) 

4(4,F2) 6(6,~,) 

5(1,P,) 6(6,0F2) 

5(3,F,) 6(6,lF2) 

4. FIRST-ORDER TRANSFORMATION 

As one can see from Table I, the generator of the first transformation is (I, 8) 

I(I.F1E‘Fz 
s2.4 ( 2.4 

pLEF2(FIl x ~l’l.“‘Al 
) . (7) 

For transformation [(4), (7)] to be small for f - X-’ one has to impose a restriction 
on the order of magnitude for the parameter s:!~~““““~ 

s2.4 
I(I.FI)E~Z < 1’ 

(8) 

where X2 - (B/W). This transformation affects the parameter f$!$.“)E” via the 
commutator of the generator (7) with GzT??y”“EE and G4Tj!$.4i)‘2iF2 terms of the 
untransformed effective Hamiltonian 

$;.FWz = f;‘;.MF: + s~l;.f+‘EF2(&z _ 64). 
-. 

Additionally. through the commutator 

(9) 

[ is:!:.‘l)EFZS~!.:.FI)~~Z, ,:!~,“““‘;ZTi!:,“l’E~2 I. 
it affects the diagonal coupling parameters t$$““‘rr~ (S = 2. 4) 

(10) 
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as well as the parameters f~!~sO,A’)rsr~ (s = 2. 4) 

4 -Z(O.AI)EE = @.AI)EE _ _ I(l,FI)EFzt~(l,FI)EF2 
t2.2 

9 
s2.4 _.4 > 

8 $$AI)FzFz = &,AI)FzF~ + _ Sl(I.F~)EFzt:!6.FI)EF2. 
17 2.4 

The change in the second-order interaction parameter 

-2(2,Fz)EFz _ 2(2.Fz)EFz 1 
f2,4 - t2.4 

l(l.FI,E~~t:‘4.Fi’F~F~ 
2& s2.4 , 

(11) 

(12) 

induced by the first transformation is due to the commutator of Sl with the term 
&&I ,FW2T$JWz. Major contributions of the first transformation to r2J and r2J2 
terms of methane-type molecules have been analyzed in a previous paper (8). The 
above transformation also contributes to the higher-order terms, e.g., 

t3(3 AdEE = &Az)EE + & ,~(:.FI)EFz~~(~~,F~)EFz 
2,2’ 

36’ - ) 

2 
“3(I,FWzFz - 3Cl.FdF2Fz _ _ ,:(~,Fl,EF2t~(42.Fz,EF2EFz 
t4,4 - t4,4 

5’ , ’ 

(13) 

The details of the commutator calculations are presented in Ref. (2) and in the 
Appendix. 

Equations (9)-( 13) contain a free parameter, s:~$,~I)~~* - h’. Therefore, there 
exist many sets { t,?~Pr)r~r~’ (s, s’ = 2, 4)) of parameters t which provide the same 
vibration-rotation energies of the vibrational states considered. In order to remove 
this ambiguity in the fit of experimental energy levels one has to set a fixed value 
for one of the parameters involved in Eqs. (9)-( 11). This value, for example, may 
be derived by perturbation calculations. Since admissible variations in the t2’“r) 
parameters are of the order of the parameters themselves one can fix one of the 
parameters in Eqs. (10) and (11) to zero. On the contrary, the allowed variations 

Atz.4 I(‘J’)~~~ must lie in small range around the value 

t;‘;JWz = 2 B3i4 ____ w2 + 04 

2 (W2W4)1’2 ’ 

Otherwise the condition ~2,4 ‘(1~F1)EF2 d X2 is violated and the convergence of the 
Hamiltonian expansion may be worse. 
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Substituting Eq. (9) in Eqs. (10) and (11) we find that allowed variations 

At = i - t of parameters of the effective Hamiltonian are related by the equations 

4 A@“” = - 9 _uAt;!;.““, A$..‘l” = $ xAt;!‘y”~ 

2 At;(;.E) = _ __ &Q;!;.“” 4 

38 ’ 
&i!;,“’ = _ _ ~&;!;,“I’ 

9l ’ 

A,$;.Fz) = ! xA&;,““‘. 
3 

(15) 

where X = t~j~.“‘)EF2/(&2 - G4). For the sake of simplicity some superscripts of the t 

parameters are omitted in Eqs. ( 15). For closely lying vibrational levels which satisfy 
the relation 

one has 

(17) 

i.e., small variations in the interaction parameter lead to relatively large variations 

in the diagonal r2J2-type parameters. 

Strong Resonance Case 

In the case of strong resonance it is convenient to rewrite relations ( 15) in another 
form where one of a At$?)rsrS is regarded to be an independent variation. For 
example, At’s may be written as functions of At$i.‘;2viFz 

(19) 

As one can see from Eq. (19) in the case of strong resonance [i.e., for (62 - 6Y4) 

6 X%] the interaction parameter t . :($F’)EF* has to be well defined in the fit because 
it cannot be changed considerably by transformations [(4), (7)] satisfying the order- 
of-magnitude restriction (8) 

However, all the five diagonal r2J2-type parameters may be changed from negative 
to positive values, including zero, by unitary transformation [(4). (7)]. Their changes 

are related by Eq. (18). 
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5. SECOND-ORDER TRANSFORMATION 

According to Table I the allowed second-order S generator in Eq. (4) is of the 
form 

‘& = $!;&)Ek I-i) k-pZ(F2) x R”‘,FZ’ :I, 
( v2.4 ) (31) 

where the parameters s $!a.Fz)EFz is free except the order-of-magnitude condition 

S;j;.FW2 < x4. 
(22) 

Transformation [(4), (21)] induces changes in the interaction parameter t~!~~Fz”‘Fz as 
well as in all the t-:!$r)rSrS’ (s, s’ = 2, 4) parameters. After the calculation of the 

commutator [S,, Xi] we find relations between parameters of once-transformed 
and twice-transformed effective Hamiltonians. There is only second-order contribution 

-1(‘Jj)EF: _ ?(l,Fz)El-‘2 
t 2.4 - iz.4 + ,;!;.Fz,W?(&4 _ 6,). 

(23) 

Changes in the diagonal third-order parameters are described by the formulas 

‘3(3.Fl)I;zFz = t:(:.F~)F2F2 + 
t4.4 (24) 

Changes in the nondiagonal parameters have quite similar form 

j;(4,‘1’“” = &.F1)EF2 _ ! Z(W2)EFi I(~.FI)F~Fz 

5 
s 2,4 f4.4 9 

‘3(3,F,)EF2 _ 3(3,F1)&.‘1;2 _ 
f2.4 - f2,4 

i;(;.Fz)EFz = @,F2)EF2 + 

In Eqs. (24) and (25) we use tildes for 

1 
2cz.F2)Enf~(~.F~)~2F2 

3 s2.4 , . (25) 

the parameters of the twice-transformed 
effective Hamiltonian whereas the untilded parameters are those of once transformed 
effective Hamiltonian. Equations (23)-(25) contain a free parameter $!$*Fz)EF2. 

Therefore there occurs a linear dependence between the parameters t$Tr)rJrJ’ (s, S’ 
= 2, 4) and the parameter t2,4 2(2*F2)EF2. This linear dependence is to result in the 
ambiguity in the fit of the experimental energy levels. In order to remove this 
ambiguity one may fix one of these parameters. 
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As in the case of the first transformation we may rewrite Eqs. (23) and (24) in 

another form 
I- 

A@.“” = _ ; 

Changes in the interaction parameters are related by equations 

@%“I) - _ & ZAt;!;.“‘. 
2.4 - 

(26) 

(27) 

As in Eq. (15) we omit here some trivial superscripts and assume that Ar = i - t. 
Parameters Y and Z have the values 

I(I.F,)EFl 
f2.4 

I(i.F,)hF> 

y = e4 - &2 . 

f4.4 

z = 64 - 62 . 
(28) 

Equations (26) and (27) imply that variation of the interaction parameter t:!$.F2)EF2 
induces changes in the parameters ti,!Fr)rsrs’ (s, .s’ = 2, 4). 

Strong Resonance Case 

In this case it is convenient to choose variation of one of the diagonal coupling 
parameters t:;(,K’r)rsrs (s = 2, 4) to be independent. Let us, for example, take the 
parameter t@A*‘“E as an independent one. Then Eqs. (26) may be written in the 
following form 

-2(7 Fz) _ 
Atz,&. - 

3i5 ‘4 - ‘2 

fi 
1(1 At ;!:,,4z’ 

f2.4’ 

and 

(29) 

(30) 
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Changes in the interaction parameters are related by the equations 

3 A$;.“” = _ 

5 

3 1 A$,‘.“l’ = _ _ C&;(;.h?, 

2ti ’ 

A$;&) = _ ! C&:(+42) 
2 ‘- (31) 

For close-lying vibrational levels satisfying the relation I&, - GdI < X2w (strong 
resonance) the allowed changes in the value of the second-order interaction 
parameter induced by the second transformation are the order-of-magnitude less 
than the value of the parameter itself, 

Atz.4 
2CF2EF2 < A2&.F2)EF2. 

However, all the third-order r2J3 type parameters may be changed within a wide 
range by unitary transformation [(4), (21)]. Their variations are related by Eqs. (30) 
and (31). 

It should be noted that even in the case of strong resonance there exists an 
essential ambiguity in the parameter t $$qF2)EF2 induced by the first transformation 
[see Eq. (9)]. 

6. THIRD-ORDER TRANSFORMATIONS 

There are three generators of the third-order transformation 

s2.4 
~(~,FI)EF~s:(:.FI)EF~ 

> (32) 

s2.4 
~(~,FI)EF~s:(~~,FI)EF~ 

9 (33) 

,:!~‘,F~,EF~s:~~.F~)~F~. (34) 

The commutators of these generators with Gz~$,~‘)~~ and G4T!j(40.a’)F2F2 terms of the , 
effective Hamiltonian contribute to the third-order interaction parameters 

-3Cl.FWF2 = &FdEF2 + s;‘;.F~)EF2(~2 _ G4), 
t2.4 (35) 

$j.A)EFz = t$$3,FM’2 + sj’43.WF2(&2 _ g4) 
9 (36) 

j;(.j.“W’, = t;‘.j.FzWz + s:$3.F2’EF2(&2 _ G4). (37) 

Third-order transformations also affect all the fourth-order diagonal and interaction 
parameters of the r2J4-type. The present discussion is limited to the third-order 
terms whose study is sufficient to perform the analysis of the data reported by Pierre 
et al. (7). 

As one can see from Eqs. (35)-(37) the third-order transformations (32)-(34) are 
to result in uncertainties of the third-order interaction parameters t:!Fr)EF*. These 
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uncertainties must have the order X6(G2 - G4), otherwise the contributions to the 
fourth-order parameters would exceed the values of these parameters by an order 
of magnitude. 

7. SIGN INVERSION FOR ALL INTERACTION OPERATORS 

Previous sections discuss only small transformations which do not disturb 
conventional ordering of the effective Hamiltonian. For the correct comparison of 
the calculated and fitted data (Section 9) we have to consider a unitary transformation 
of Fe”‘ which inverses the signs of all the interaction operators. This transformation 
is not small but it does not change conventional ordering of the effective Hamiltonian. 

Let us write the block Heff = PpeffP of the effective Hamiltonian ( 1) corresponding 
to the u? - v4 dyad in the following form 

(38) 

where HE is a 2 X 2 “operator-matrix,“’ HFz is a 3 X 3 operator-matrix, and 
HE_F2 is a 2 X 3 interaction operator-matrix of the 0 100 and 0001 vibrational 
states. The unitary transformation 

u=6E -:‘,) 
inverses the sign of the interaction block HE-F1 

&ff = U’HeffU = HE -H&p* 

-H& HA >. 

(39) 

(40) 

Here the notation lE stands for the 2 X 2 unit matrix and In for the 3 X 3 unit 
matrix. Both H’” (38) and &’ (40) have the same eigenvalues. Therefore the 
common sign of the interaction block is undeterminable from the experimental 
spectrum. Note that transformation (39) does not affect relative signs of the 
interaction parameters. Therefore one can avoid this kind of ambiguity by a proper 
choice of the sign of the first-order Coriolis coupling parameter ,i!$.f“‘“F2. 

8. COMPARATIVE ANALYSIS OF THE FITTED SETS OF PARAMETERS FOR THE u2 
AND v4 INTERACTING BANDS OF CH4 AND SiH4 

The spectroscopic parameters for the u2 and v4 interacting bands of CH4 deduced 
by different authors from the fit of the experimental data show pronounced 
discrepancies3 which involve even differences in signs and orders-of-magnitude of 
the parameters in question [see Table 13 in Ref. (5)]. A similar situation takes place 
in the case of the u2 and u4 interacting bands of SiH4. The object of this section is 

2 We use the term “operator-matrix” to emphasize that matrix elements in this case are rotational 
operators. 

3 We mean the discrepancies in the parameters recalculated for the same notation. 
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to demonstrate that these distinctions may be explained on the basis of the 
transformations considered above. 

As an example we first discuss in detail two sets of fitted parameters of the 
v2 - v4 dyad of CH4 deduced from experimental spectra by Pierre, Pierre, Champion, 
and Lutz (PPCL) (7) and by Gray and Robiette (GR) (9). Let us perform two 
successive transformations of the effective Hamiltonian with the PPCL parameters 
in such a way that the interaction parameter t2,4 ‘(‘mm2 = -9.6334 cm-’ of Ref. (7) 
is converted into the parameter t 2.4 -‘(‘J’w~ = -9.52 cm-’ of Ref. (9) and the interaction 
parameter t$($F2)EF2 = -3.57 X 10-I cm-’ of Ref. (7) is converted to zero as in Ref. 
(9). The generator of the first transformation is 

Sl = 5.097. 10-4(V3’“l) x R’(‘.f-d)Al. (41) 

The parameters of the once transformed effective Hamiltonian are presented in the 
third column of Table II. The generator of the second transformation is 

S2 = -1.6737 - lo- 4 ( ‘) h?(h) x R2’2.t.2’2’)“1. ( - V2,4 (42) 

Once can also see from Table II that the parameters of the twice-transformed PPCL 
Hamiltonian and the GR parameters [Ref. (9)] are in close agreement, except the 

TABLE II 

The Demonstration of Unitary Equivalence of Pierre-Pierre-Champion-Lutz (PPCL) (7) and 
Gray-Robiette (GR) (9) Parameters for Interacting vq and v2 Bands of Methane 

R (9, I- 1 PFCL a b GR 

2(0,A1)x102 -0.6640 -0.4433 -0.4433 -0.3846 

2(2,E)x102 -3.1455 -2.9544 -2.9.W -2 .a025 
3(3,+2)X103 -0.210 -0.215 -0.6536 -0.6875 

2(2,F2)x102 l(l,F,) 
-9.6334 -9.52 -9.52 -9.52 
-3-570 -3.7240 0 0 

3(1 ,F,)x103 -0.0828 0 

3(3,Fl)Mo3 0.2300 0 

3(3,F2h103 0.1983 0 

l(l,F,) 10.34721 10.34721 10.34721 10.3516 

2(2,E)x102 2(o,A$x102 

-0.1813 -0.32e4 -0.3204 -0.3106 

-0.942 -0.7213 -0.7213 -0.6879 

2(2,F2h102 -2.758 -2.9235 -2.9235 -3.126 

3(1 

3(3rF,h103 ,F,Mo3 

0.5245 0.5319 1 .I765 1.212 

0.2362 0.2429 0.83l3 0.8892 I - 
a Once transformed PFCLparamters 

b Twice transformed PPCL-parameters 
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third-order interaction parameters. One can clearly choose the free parameters 
3( I .FI)EF> 

s2.4 
, s ;y w2 

, and s2.4 3(‘~‘2)E’2 in Eqs. (32)-(34) so that the three transformed 
parameters ;;!;,““““2, ;;!~.“I’“F2, and @I.‘2)Eh are converted into zero by the third- 
order transformations (35) and (36). Thus the “unitary equivalence” of the two sets 
of parameters under consideration is proven. The remaining minor differences 
between the transformed PPCL parameters and those of Gray and Robiette may be 
explained by the following reasons. First, the expansion of pff was differently 
truncated in Refs. (7) and (9) and besides, different experimental spectra were 
fitted. Second, there still exists a small contribution from higher-order commutators 
which may slightly modify the relations considered. 

Analogous comparative analysis was made for spectroscopic parameters of the 
I+ - v., interacting bands of SiH4 fitted to the experimental spectra by Pierre et al. 
(10) and by Gray et al. (11). The results are presented in Table III. We made two 
successive transformations of the effective Hamiltonian reported by Pierre et al. 
(10). The first-order transformation was performed so that the interaction parameter 
I I I J,)EF2 

J2.4 
= -5.6147 cm-’ of Ref. (IO) was transformed into the parameter 

t$.‘~““‘l = -4.98 14 cm-’ of Ref. (II). and the second-order transformation was 
performed in such a way as to convert the value of the once-transformed parameter 
l;!;..“““” = -4.57 X lo-’ into the value ? ~‘~-‘z)‘i’i = -60.8 X 1O-5 of Ref. (II). As 
one can see from Table III there is a reasonable agreement between the twice- 
transformed parameters of Ref. ( 10) and those of Ref. (11). 

TABLE III 

The Comparison of Pierre-Champion-Koslov-Smirnov (10) and Gray-Robiette-Johns (II) 

Spectroscopic Parameters for v2 and v4 Interacting Bands of Silane 

Pierre 

et al. 
* b Gray et al 

2(0,A,h102 -2.338 0.412 0.412 0.250 

2(2,e102 -2.938 -0.556 -0.556 -0.429 

3(3,A2h105 -4.24 -4.57 -60.8 -60.8 

l(l,P,) -5.6147 

2(2,F2)x102 -0.111 

2(O,A,h102 1.570 -0.263 -0.263 -0.187 

2(2,L)XlO2 -2.624 0.126 0.126 0.099 

2(2,P2)x102 0.501 -1.561 -1.561 -1.741 

3(1.F1h105 16.75 17.24 99.88 103.25 

3(3,F,)x105 -4.02 -3.57 71.87 83.95 

-4.9814 

-2.0369 

-4.9814 -4.9814 

0.3467 0 

a Once tranefonned Pierre et al. parameters 

b Twice tranefomed Pierre et al. parameters 
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9. CALCULATED r’J*- AND r2J3-TYPE PARAMETERS OF THE EFFECTIVE 

HAMILTONIAN FOR THE INTERACTING v2 AND v4 BANDS OF METHANE. 

COMPARISON WITH THE FITTED DATA 

The formulas for the r’J’- and r’J3-type parameters of the effective Hamiltonian 
for the v2 and v4 interacting bands of tetrahedral XY4 molecules have been derived 
in our recent paper4 (4) using the quasidegenerate formulation of contact transfor- 
mations ( 13) and ( 14). 

Our choice of normal coordinates and of the bases of irreducible representations 
coincides with that of Refs. (3, 15) i.e. the parameters c.~,, t,., tZ (tZ = 2a/3 + tJ 
= 4n/3 + cx) of orientation of doubly degenerate normal coordinates are taken 
all through the paper as E, = r and the Coriolis coupling constants {& = -sin y 
X cos tz and c&r = cos y cos t, [Ref. (16)] have the forms 

r&z = sin y = c14, &s; = -cos y = <23. 

In the second column of Table IV our calculated parameters for the I+ - u4 dyad 
are listed. These calculations are performed using the perturbation formulas of Ref. 
(4) and the anharmonic force field of Gray and Robiette (3). These results will be 
referred to as “direct” calculations. The molecular parameters used are summarized 
in Table V. 

Pierre et al. (7) chose another set of orientation parameters associated with 
tZ = 0, therefore, all the interaction parameters of their paper have opposite signs. 
Before the comparison of the calculated and fitted parameters of Ref. (7) one has 
first to perform transformation (40) which changes the signs of the interaction 
parameters and is equivalent to the appropriate change of orientation of doubly 
degenerate coordinates. 

As one can see from Tables III and IV the parameters derived by the “direct” 
perturbation calculations do not coincide with the fitted parameters of Gray and 
Robiette (9) nor with the fitted parameters of Pierre et al. (7). There are especially 
large discrepancies in the case of the r2J3-type parameters. However, there are no 
real contradictions between the calculated and fitted parameters in this case since 
these sets of parameters may be matched by the unitary transformations considered 
in Sections 4-7. 

Let us consider, for example, the calculated parameters and the PPCL parameters. 
The second-order transformation (4) having the generator 

s2 = -7.25. 10-5((-1)vf$2(h) x R~(~.AV~I (43) 

transforms the set of directly calculated parameters into the set (column 3 of Table 
IV) which is rather close to the fitted parameters of Ref. (7). The free parameter 
s$i’F2)EF2 is chosen so that the calculated value t$:.“2)EE = -0.020 X 10m3 cm-’ is 
converted by transformation (4) into the CCPL value 2:!:,.“2)EE = -0.210 X 10m3 
cm-‘. The first-order transformation [(4), (7)] appears to be negligible in this case. 

The conclusion of the present section may be summarized as follows. The direct 
perturbation calculations using contact transformation result in the effective Ham- 
iltonian (cr)Zeff which does not necessarily coincide with the effective Hamiltonian 

4 There are some misprints in Appendix II of this paper. The true formulas for f$$“““” and f:!2”“‘i” 

parameters are presented in Ref. (8) or in Errata (II’). 
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TABLE IV 

The Comparison of Theoretical and Experimental Values of Spectroscopic Parameters 

for Interacting Y* and vg Bands of Methane Molecule 

13 

x0 
-1 Cl (K,n I- ) Our direct cal- Unitary trens- PPCL 

8 
armk?- 

culations 8 formed parme- ters 
tnrs 

2(0,A,)x102 -0.521 -0.521 -0.6640 

“2 2(2&:)x102 -3.135 -3.135 -3.146 

3(3,A2)x103 -0.020 -0.210 -0.210 

!J l(l,F,) +Y .6321 
>a .rl 

-9.6321 -9.6334 

’ 

: 2(2,F2)x102 +5.366 
: 

zw ,” 

2 

-3.771 -3.570 

l(l,F,) 10.2446 10.2446 10.34721 

2(O,A,)xlO* -0.064 -0.064 -0.1813 

2(2,E)x102 -1.080 -1.080 -0.942 
‘i 

2(2,F2)x102 -2.893 -2.893 -2.750 

3(l,F,)x103 0.251 0.530 0.525 

3(3,F+03 -0.014 0.241 0.236 

* The formulas of Ref.(l) and anharmonic force field of Ref.(3) were 

used. 

b Ref.(‘l). 

@‘)Zpeff deduced from the fit of the experimental data. Even if these two effective 
Hamiltonians have the same eigenvalues they may still have different parameters 
since they may have different eigenfunctions ( ‘k’“}. The additional transformation 
[(4), (43)] which matches the eigenbases of (CT)2?eff to the eigenbases of (fi’)2Fff of 
Ref. (7) makes it evident that there is, in fact, a good agreement between the 
calculated and fitted data for the v2 - v4 interacting bands of CH4 (see, for example, 
columns 3 and 4 of Table IV). 

IO. REDUCED EFFECTIVE HAMILTONIAN FOR THE 0100 AND 

0001 INTERACTING STATES OF Td MOLECULES 

In order to avoid the considered kind of ambiguity we suggest the use of the 
reduced effective Hamiltonian’ for the v2 - v4 interacting vibrational states. 

Some terms may be removed from the Hamiltonian (1) by appropriate choice of 

5 The term “reduced Hamiltonian” was introduced first by Watson (17) in his study of the centrifugal 

distortion Hamiltonian of asymmetric molecules. The reduction procedure has been generalized to 

interacting states of asymmetric top molecules in Ref. (18). For degenerate vibrational states of spherical 

top molecules the reduced Hamiltonians were suggested in Refs. (1, 2). The reduction of r2J2-terms for 

the v2-yg interacting states has been discussed in Ref. (8). 
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TABLE V 

The Molecular Parameters Used for the Calculations of r*J’- and ?/‘-type Spectroscopic Parameters 
for v2 and v4 Interacting Bands of “CH4 [All parameters are taken from Ref. (S)] 

constants values in cm -1 constants values 

wi 3025 (23 = L_b 32 -0.7974 

*2 1583 $4 =_ 82, 42 0.6034 

a3 3157 (34 = f3x 4y 0.7218 

WY 1367 s; 4 $3x 3y 0.0462 

Be 5.321 0.4538 

K.. 1Je values in cm -1 K.. 
1Je 

-1 
valuea in cm 

Kill -149.3 K234= K2a 32 42 -24.5 

K 122= K12a 2a 7 K 244” K 2a 48 42 -6 

K 133= K13x 3x -162.3 K333’ K3x3Y 32 -171 .8 

K 134” K13x 4x -3.2 K334” 10x 3y 42 -21 

K 144z K14x 4x 38.2 K344f K3x 4y 42 -25.5 

K 222= K2a 2e 2e -8.8 R 
444’ K4x 4y 42 -21.2 

K233E K2a 3a 32 -15.3 

free parameters in S generators (5, 6). The resulting reduced effective Hamiltonian 
contains a smaller number of adjustable parameters compared to expansion (1). 
From the practical point of view, in order to obtain the reduced Hamiltonian one 
has to fix to zero (or to other given values) the removable parameters in expansion 
(1). The number of removable terms coincides with the number of free parameters 
in S generators. The fixed parameters must be chosen so that transformations 
having generators (5, 6) become forbidden. In order to avoid the ambiguity caused 
by transformation (7) one may fix to zero one of the parameters t:(,K,r)rsr3 (s = 2, 
4). Let this parameter be #~E’FZFZ. This choice is equivalent to the unitary 
transformation of the effective Hamiltonian with generator (7), where 

(44) 

The parameters of the reduced Hamiltonian are related to the parameters of the 
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unreduced one in the following way. For the interaction parameter redt:!A,“)EEi one 

redt #,“I EF2 = 
-9&1-G t;‘;.“1’“F2 + _ 4 2(2,E)F1F: - 

4 t ;!$“I )EF2 64.4 . 

For the diagonal coupling parameters these relations may be written as 
red 2(0,A1) _ 2(0..41) _ 2C2.E) 

t2.2 - t2.2 t4.4 . 

and 

(45) 

red Z(2.E) _ ?I'&) _ _ 
t2.2 - t2.5 (46) 

red 

red$.E) = 0 (fixed). (47b) 

3 
redt~(;,R) = &2.F2' + _ @.E' 

4’. 
(47c) 

It should be noted that this transformation gives rise to the contributions to the 
higher-order terms as well. 

To avoid the ambiguity caused by the transformation having generator (2 1) one 
may for example fix to zero one of the parameters t$K,r)rrrs (s = 2, 4). Let this 
parameter be t:!j,.42)EE. Th’ 1s choice is equivalent to the unitary transformation of 
the effective Hamiltonian having generator (21) where 

2(2,F*)EF2 
s2.4 

_ (48) 

The third-order parameters of the reduced Hamiltonian are related to those of the 
once-transformed Hamiltonian [the transformation having generator (44)] in the 
following way 

redt;(~J2) = 0 (fixed). (49a) 

(49b) 

(49c) 

For the interaction parameter t:!~.h)EFz one has 

redff(;.Fz) = tf($.R) 
-. 1. (50) 

After the restrictions of the types (47b) and (49a) are imposed, there are no longer 
“degrees of freedom” in the effective eigenbasis { W-lf}. Transformations (7) and 
(21) become forbidden, i.e., one cannot perform them without violating Eqs. (47b) 
and (49a). This is the reason why one can expect to have unambiguous calculations 
based on the reduced Hamiltonian. This proposition is confirmed by Table VI 
where the parameters of the reduced Hamiltonian for the v2 and u4 interacting 
bands of methane recalculated from those of Refs. (7) and (9) are presented. The 
differences between the values of the parameters in Table VI are much less 
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TABLE VI 

The Parameters of the Reduced Hamiltonian for the v2 and v4 Interacting Bands of Methane 

Cl (K, r) in cm-’ a b c 

2(o,A,)x102 0.270 0.303 0.559 

yL 2(2 ,WNJ3 -2.330 -2.207 -2.200 

3(34x103 0 0 0 

8 

‘a 
’ 0 

l(l,F,) -9.144 -9.159 -9.072 

r P :: 2(2,F2)x102 -6.296 -6.623 -6.626 

a 

2(o,A,1)x102 -0.809 -0.769 -0.764 

2(2,Wr102 0 0 0 

Y+ 2(2,F2,xlo2 -3.465 -3.642 -3.703 

3(1 ,F,W3 0.216 0.202 0.221 

3(3,F,)rl4 -0.045 -0.033 -0.041 

a - recalculated parameters of Bef .(9) ; 

b - recalculated parameters of Ref.(?) ; 

c - our direct calculated parameters. 

pronounced than the corresponding differences for the parameters of an unreduced 
Hamiltonian (see Tables II and IV). 

The reduction procedure can be easily generalized to higher-order terms. The 
number of the adjustable parameters of unreduced and reduced Hamiltonians for 
the interacting 0100 and 000 1 states of tetrahedral XY4 molecules is presented in 
Table VII. 

TABLE VII 

The Numbers of Parameters of Unreduced and Reduced Hamiltonians for Interacting 0 100 

and 0001 States of the Tetrahedral XY, Molecules 

TYPe Unreduced Hamiltonian deduced Hamiltonian 

of operators Diagonal Interaction Diagonal Interaction 
operatora operators operators 

r2J 1 1 1 
_ .2J2 5 1 

4 

r---_‘__ 

.2J3 --- -I 3 
3 2 

r---1_ - 

3 

r2J4 10 3 - _-- J r----7-- 6 

2.255 5 6 ----- -I r 1 -6--- 

.2J6 16 ------ J 6 
7 

We recommend to truncate the expansion of Sv++ for methane and silane as indicated 
in Table by dotted lines 
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1 I CONCLUSIONS 

The major conclusion is that the r’J”-type parameters (Q 3 2) of the interacting 
v2 and v4 bands of XY4 molecules are not spectroscopic constants. There are many 
sets of such parameters. The distinctions between these sets are due to nonphysical 
distinctions in the eigenfunctions of associated effective Hamiltonians. In order to 
make consistent comparisons of the fitted parameters of different studies or 
comparison of the fitted and calculated parameters. one has to take into account 
transformations (5) and (6). A possible way of performing an unambiguous fit of 
experimental data is to use the reduced effective Hamiltonian. 

The above conclusions have been recently verified in a series of actual fits of 
experimental energy levels of the vz and v4 interacting bands of CH4 and SiH4 
performed together with Champion and Pierre (19) using computer programs 
developed by Dijon group. The behavior of the fitted parameters appears to be in 
agreement with the relations discussed in the present paper. 

APPENDIX 

Culculation qf‘tlw Commutators und Anticommutators 

of‘ Rotational Tensor Operators 

Rotational tensor commutators and anticommutators are calculated using the 
following formula 

l~I(JI.III‘I) [R . 

X (-l)J3\/2J3+1 KJ’ J2 J3 l,,., 121’z ,%y ((J1J21}sJ,))R”‘+R2~a(J3,~~‘) 

where K$,, c,-,,$ are isoscalar coefficients tabulated, for example in Ref. (.5), and 
((J,J21}&13)) are genealogical coefficients [Ref. (ZO)]. The definition and detailed 
discussion of calculation of vibration-rotation tensor commutators can be found in 
the Appendix of Ref. (2). We give here the list of the rotational anticommutators 
used in the present work. 

[RI(r.I.‘I). R ]+ r(r.Fl) 2(2.h-) = _2R2(2.") 

[Ri(lt;') Rl(bFl)]:".h) = _2R'('.h), 

[R > I+ l(l.F~) RI(f.FI) 2(0..41) = _2R2(0..41) 

[R2(2.h), R ]+ _ l(l.F~) 3(3..42) = 7R3(3..4?) , 

[R2(2."') Rl(l.f.l)]:'l.'l' = ! ,/jR3(1.h), 

5 

[R 2(2,1;2) Rl(l,'I) 3(3.F!) = ', . ]+ _ 

[R2(2&), Rl(l.9(3,"2) = 2 ,/I; R3'3."). 
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Caldation qf‘the Commtutors of 1~‘ihrutionul Tmsor Operators 

The vibrational commutators of the present paper may be calculated using the 
general relation 

X a,)’ 

where 
l?i ‘rk 1‘1 

rz r r, 1 
1s 6r symbol of the Td group. From this formula one readily 

obtains the vibrational commutators 

IV.4 > 
LIF‘?(FI) (- L)Vg2(FI) .4r 

2 
]- =i i _ V~~“‘?(.“l) 

3 
4.4 . 
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