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The general scheme of the qualitative analysis of finite-particle quantum problems is discussed.
Theoretical methods for the qualitative analysis of energy spectra in quantum problems are
applied to the study of the rovibrational energy levels of spherical top molecules. The existence
of modifications in the rotational cluster structure and of redistributions of the energy levels
between different branches under the rotational excitation is shown for the v, /v, dyad of the
12CH, and ?*SiH, molecules. An interpretation of the qualitative features of energy spectra in

Manifestation of bifurcations and diabolic points in molecular energy spectra

terms of bifurcations and formations of conical intersection points (diabolic points) on the
energy surfaces of the corresponding classical problem is proposed.

I. INTRODUCTION

Rapid modernization of experimental spectroscopic
methods produced a considerable increase of the accuracy
and the number of known molecular energy levels. Along-
side the study of the lowest levels, much more highly excited
states become the object of attentive experimental and theo-
retical investigations. The main difficulty in the study of
highly excited states of finite-particle system (molecules,
atomic nuclei, and even quark systems) is the necessity of
the description of a large number of admissible states, their
classification, the extraction of some regular sequences of
states and some exceptional states, and the study of their
properties. In contrast to the lowest states which may be
practically characterized individually, the excited states re-
quire an absolutely different approach. We have to try to
characterize different groups or sequences of states rather
than each state separately and to indicate some exceptional
states if they exist. Such an analysis of quantum finite many-
particle systems may be based on the same ideas as that used
by Poincaré, Lyapunov, Hopf, and Andronov'~® for the
qualitative study of classical mechanics problems. Their
generalization to a much wider class of scientific problems is
known now as the catastrophe theory and is applied to the
study of qualitative changes of enormously different kinds of
models.*®

In past years a lot of papers were devoted to the study of
transitions from regular to irregular spectra for some quan-
tum finite particle systems, i.e., the following problem was
studied: How to characterize in quantum problems the
qualitative phenomena corresponding in classic mechanical
systems to the well-known transition from quasiregular to
chaotic motion.'®'* At the same time the much simpler
question of the qualitative changes of regular spectra in
quantum problems closely related to possible complications
of the quasiregular motion in the corresponding classical
systems (i.e., the bifurcation study) is rarely discussed in the
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literature. Probably it is due to the fact that bifurcation anal-
ysis assumes the study of qualitative changes of the dynamic
system under the variation of some parameters and therefore
it is oriented to nonstationary problems where time, external
fields, etc., are the natural parameters. Nevertheless, for
conservative Hamiltonian systems, the analysis of the dy-
namics upon the variation of parameters become interesting
and physically meaningful if the parameters themselves pos-
sess clear physical interpretation. For example, the param-
eters may play the role of integrals of motion (strict or ap-
proximate ones) such as the particle number, the energy, the
angular momentum, etc.

Qualitative or topological analysis of classical dynamic
systems includes, in the simplest case of conservative sys-
tems, the study of the topological properties of the set of
classical trajectories. Similar analyses are suitable and useful
for quantum systems as well. The topological properties of
the trajectory sets for classical dynamic systems quickly be-
come much more complicated under increase of the number
of degrees of freedom (the phase space dimension). The
most simple case corresponds to dynamic systems with one
degree of freedom (two-dimensional phase space). The
qualitative features of classical conservative dynamic prob-
lems with two-dimensional phase space is completely de-
fined by a set of stationary points on the energy surface
which specifies the topological structure of the set of classi-
cal trajectories.

A well-known molecular example of application of the
qualitative methods to the rotational problem is the descrip-
tion of the rotational cluster structure. Although the qualita-
tive description of the rotation of a rigid body in terms of
stable and unstable rotation axes (i.e., in terms of stationary
points of the rotational energy surfaces) has a long history
(see, for example Landau and Lifshitz'®) the application of
the same qualitative ideas to explain the rotational energy
level clustering in spherical top molecules was made only in
1972 by Dornay and Watson.'® The last ten years detailed
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description of the rotational cluster structure was realized
mainly by Harter, Patterson and their co-workers.!”2! A lot
of different examples of energy level clusters were given.
Graphical visualization of rotational surfaces enables one to
see the semiclassical quantization for rovibrational problems
and to understand better the relation between classical and
quantum molecular rotation problems. The generalization
of this approach to the two-dimensional vibrational problem
was proposed as well.

In the present paper we limit ourselves to the discussion
of qualitative changes which are typical for two-dimensional
phase space. The example of such effects is the appearance or
disappearance of new stationary points (bifurcation phe-
nomena) or some other kinds of singular points on the ener-
gy surface under the variation of an integral of motion. The
simplest typical effect is the qualitative change of the energy
level system under the variation of the angular momentum
value. The same effects are surely present for problems with
larger numbers of degrees of freedom.

A classification of the qualitative changes may be done
by taking into account the number of parameters and the
constraints imposed by physical reasons (hermiticity, sym-
metry requirements etc.). For example, in the absence of
symmetry and under the variation of one parameter, the
only generic bifurcations (qualitative changes related to
modifications of the system of stationary points) are those
described by the fold catastrophe: two stationary points ap-
pear or disappear generically. Additional symmetry require-
ments result in new types of qualitative changes: the so-
called equivariant bifurcations and catastrophes. The
equivariant bifurcations received special attention in the last
few years from both mathematicians and physicists.?>¢ Fi-
nite groups are most frequently used for molecular prob-
lems. They are significantly simpler than continuous Lie
groups appropriate for equivariant bifurcation theory in par-
ticle and nuclear physics, or in elasticity theory of contin-
uum media.

It should be noted that the bifurcation analysis of quan-
tum problems is not very popular now although the analogy
between qualitative changes of quantum systems and phase
transitions or critical phenomena in macroscopic systems
was discussed several times by different authors either in the
context of concrete physical problems®”2® or during the gen-
eralization of the catastrophe theory ideas to quantum prob-
lems.*

In a series of works realized by Moscow physicists, a
systematic study of qualitative effects in finite particle quan-
tum systems under the variation of integrals of motion was
performed.?®3%34 Qualitative features of energy spectra in
quantum systems were mainly studied and some qualitative
aspects of the eigenfunctions which influence the distribu-
tion of spectral line intensities were partially understood.
The general theoretical analysis enables one to classify all
possible critical phenomena appropriate for the rotational
structure of isolated nondegenerate vibrational states under
the variation of the rotational angular momentum.’® All
these critical phenomena are qualitative effects correspond-
ing to the possible rearrangements of the cluster structure of
rotational multiplets'®'®*"32 under the variation of the rota-

tion angular momentum. Some examples of these critical
phenomena may be easily found, for example in Ref. 21, in
figures showing the three-dimensional pictures of the rota-
tional energy surfaces. Another type of qualitative effect was
shown to exist®’* for the rotational structure of quasi-de-
generate vibrational states: the redistribution of the energy
levels between different branches. This phenomenon is con-
nected with the formation of conical intersection points
(diabolic points) on the energy surfaces. The existence of
such conical intersection points of rotational energy surfaces
was pointed out in Ref. 19. Excellent graphical visualiza-
tions of conical intersection points are given in Ref. 21. Such
singularities are now under study in different areas of phys-
ics : particle and nuclear physics, superfluidity of *He-A,
stochasticity in classical mechanics.***® As an example of
the problem specified by four or more phase variables the
qualitative features of the vibrational polyads formed by de-
generate or quasi-degenerate modes were analyzed from the
same point of view.*>3* This problem is closely related to the
investigations of the transition from normal to local
modes*>*! and to the more general description of the forma-
tion of localized states.*?

It should be noted that until now model problems were
studied only.**** It was shown that qualitative effects may
exist but their experimental demonstration was not yet
found in the existing molecular spectra and no new experi-
ments were realized to verify or to reject the theoretical pre-
dictions. The aim of the present paper is to discuss shortly
the main ideas of the theoretical approach to the study of
qualitative effects and to demonstrate for the first time these
effects using real systems of energy levels obtained from the
fit of the most precise experimental data for spherical top
molecules. In Sec. II we give a brief outline of the qualitative
approach and in Sec. III we discuss the manifestation of
bifurcations and the formation of diabolic points on the basis
of the analysis of experimental data in rovibrational spectra
of spherical top molecules. We propose also a simple proce-
dure for the visualization of the complicated effective Ham-
iltonians used for the analysis which seems to be useful for
the interpretation of the intramolecular dynamics of molec-
ular systems.

. THEORETICAL BACKGROUND OF THE
QUALITATIVE ANALYSIS

In the present paper, we limit ourselves to consideration
of qualitative effects connected with the rearrangements of
the rovibrational states in tetrahedral molecules. Spherical
top molecules are especially suitable for this purpose due to
the existence of easily seen rotational multiplets associated
with one or several quasi-degenerate vibrational states and
due to the formation of polyad structure of excited purely
vibrational states caused by high degeneracy or quasidegen-
eracy of fundamental frequencies. Besides that, there exist
many very accurate experimental data and corresponding
phenomenological effective Hamiltonians for these mole-
cules.
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The subject of the theoretical analysis in the present pa-
per is a family of effective operators depending on one pa-
rameter which has the physical meaning of an integral of
motion. The purpose is to describe qualitative changes in the
eigenvalue distribution under the parameter variation. That
is we want to find and to describe typical modifications of the
cluster structure under, for example, rotational excitations
appropriate for real molecular systems. At the same time, we
want to give a more general procedure, which may be ap-
plied to different physical problems rather than to particular
molecular rotational problems. The general procedure of the
theoretical analysis includes the following stages.

(i) The construction of the effective Hamiltonian or its phe-
nomenological expansion.

(ii) Introduction of the classical limit manifold and deter-
mination on it of the symbol corresponding to quantum
Hamiltonian.

(iii) The determination of the action of the symmetry group
on classical limit manifold and indication of all possible
local symmetry groups, i.e., the stratification of the
group action on the classical limit space.

(iv) Analysis of the singularity points for different local
symmetry groups for any isolated energy surface (de-
generate stationary points or bifurcation points).

(v) Analysis of the singularities appropriate for a system of
energy surfaces (the degeneracy or diabolic points).
We present now the general scheme on different exam-

ples before treating the cases investigated experimentally.

A. Effective operators and classical limit manifolds

The simplest problem we shall consider is the descrip-
tion of the rotational structure of a nondegenerate vibration-
al state. Detailed analysis of the cluster structure in such a
case was realized for some particular models about ten years
ago,?'** but here it is necessary to repeat Harter and Patter-
son arguments and to put them in slightly more general form
appropriate for studying typical bifurcation phenomena for
some wider classes of quantum molecular problems. A gen-
eral effective rotational operator for an isolated vibrational
state may be represented in a form of a power expansion in
angular momentum operators.

He =) cop (J2I8J7 + J1J53%). (n

afy

The coefficients c¢,g, in Eq. (1) must satisfy require-
ments imposed by hermiticity, invariance with respect to
time inversion and molecular symmetry group. The operator
(1) may be written in several equivalent forms. It should be
noted that the operator (1) may be studied independently
for each value of the rotational quantum number J, i.e., for
each eigenvalue of the operator J*> which is an integral of
motion. If we consider J as a parameter the following ques-
tion naturally arises: What are the qualitative changes in the
distribution of the eigenvalues of Eq. (1) under J variation,
i.e., under the rotational excitation.

The following important step is the introduction of the
classical limit and in particular the definition of the one-
parameter family of classical Hamiltonian functions corre-
sponding to operator (1). The important notion for such'a
procedure is the classical problem. In the case of the rota-
tional problem for nondegenerate vibrational states the clas-
sical limit manifold is a two-dimensional sphere S %, and the
Hamiltonian (1) corresponds in a classical limit to a func-
tion defined on the sphere and depending on a parameter J
being the integral of motion. We shall mainly consider the J
dependence of the rotational Hamiltonian in this article with
J playing the role of a parameter. The transformation to a
classical limit may be performed by elementary formulas:

J,=jsinfcosp, J, =jsinfsing, J, =jcos b, 2)

where J,, are the projections of the classical angular momen-
tum, j is the integral of motion, 6, ¢ take the role of the
dynamic (phase) variables. The phase space of the rotation
motion of the rigid body is formed by three Euler angles ¢, v,
¥ and three conjugated momenta p,, p,, p,. The absolute
value of the angular momentum J and its projection J, = p,
on the Z' axis of the laboratory fixed frame are the integrals of
motion. It is suitable to perform the canonical transforma-
tion to new canonically conjugated variables J and g¢,, J,
and q,, J, and ¢q,. The phase space of the rotating body is
really two-dimensional as g; and g, are cyclic variables. It
can be mapped on the surface of the sphere of the radius J
with the center at the origin of the body-fixed frame (the
phase sphere, called also “Bloch sphere” in quantum op-
tics). The point on the sphere specified by the coordinates
6,¢ defines the orientation of the vector J in the body fixed
frame. The canonical transformation enables us to relate the
conjugated variables J, and g, to the angles & and . A more
accurate treatment of the transition to classical limit must
use the generalized coherent states.***® The representation
of the coherent states enables one to generalize the construc-
tion of the classical limit from the purely rotational problem
to much more complicated ones.*®

One evident generalization of the purely rotational
problem for a nondegenerate vibrational state is the rota-
tional problem for a group of degenerate or quasidegenerate
states. An analysis of the rotational cluster structure for de-
generate or quasidegenerate vibrational bands was made for
some model problems by Harter et al.'>*' Different types of
cluster structure were shown to exist and the application of
cluster approach directly to the interpretation of the experi-
mental data for heavy rotational tops was also proposed. !>’
Our purpose is to characterize (to classify and to describe)
different typical qualitative effects which can take place for
real molecular systems under rotational excitation for de-
generate or quasidegenerate vibrational bands. The corre-
sponding effective Hamiltonian may be represented in the
form of a matrix operator

[H] = [HaB(Jx)Jy,Jz)]' (3)

The matrix elements H,,; are some functions of the ro-
tational angular momentum operators J ., @ = x,y,z. Hermi-
ticity and symmetry requirements put some restrictions on
H_; which is similar to that for operator (1). The total an-

J. Chem. Phys., Vol. 92, No. 3, 1 February 1990
Downloaded 09 May 2007 to 194.57.180.32. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1526

gular momentum J2 is the integral of motion for operator
(3) and the classical limit manifold is a two-dimensional
sphere. These facts are common for both operators (1) and
(3). The symbol of Hamiltonian (3) in the classical limitis a
matrix

[Hcl] = [Hiﬂ(0’¢)] (4)

the elements of which are functions defined on S 2 and de-
pending on one parameter J also.

The eigenvalues of the matrix (4) may be interpreted as
rotational energy surfaces for different vibrational
states.'®!%! The qualitative analysis of the so obtained limit-
ing classical problem must include both the qualitative study
of each individual energy surface and the search for singular-
ities caused by degeneracy points of different energy sur-
faces, i.e., the degeneracy of the eigenvalues of matrix (4).*®

The effective operators describing pure vibrational
states (their relative positions within the polyads) formed by
N degenerate or quasi-degenerate modes are another exam-
ple. If we suppose the total number of quanta to be an inte-
gral of motion the effective operator may be written in terms
of standard annihilation and creation vibrational operators
a,,a; as follows:

— m LN my L M ‘
H=3 c,...npm--my@ ayay-ay’, (5)

where n; and m; satisfy the following condition:

N N
>m=3m (6)

i=1 i=1

~ which means that operator (5) is a block-diagonal one with
respect to the total number of vibrational quanta. For N vi-
brational degrees of freedom the introduction of the total
number of quanta as an approximate integral of motion re-
duces the general problem to an effective Hamiltonian (5)
possessing (N — 1) degrees of freedom and one integral of
motion treated as parameter.

In the case of two-dimensional vibrational problem, op-
erator (5) may be expressed in terms of pseudomoment op-
erators by using the well-known Schwinger representation.*’
The similarity between the rotational problem and that of
two-dimensional vibrational problem was used by
Harter’®*' to study the cluster structure for the vibrational
problem with two degrees of freedom.

More generally for K-dimensional vibrational problems
operator (5) may be rewritten in terms of generators of the
SU(K) dynamic group.*>*' Vibrational states forming a giv-
en polyad belong to the degenerate irreducible representa-
tion of SU(K) of the type OO0 - -0001. To realize the transi-
tion to classical limit manifold in such a case one needs to use
the generalized coherent states which are in one-to-one cor-
respondence with the points of the complex projective space
CPX~ 144 1t should be noted that the one-dimensional
complex projective space CP! is the real two-dimensional
sphere and this fact shows once more the equivalence of the
purely rotational problem and the problem of the structure
of vibrational polyads for two vibrational modes.?° The anal-
ysis of vibrational polyads in the case of three-dimensional
vibrational problems requires the qualitative study of Ham-
iltonian functions depending on four-phase variables and
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one parameter—the total number of quanta. These problems
are generally much more complicated due to possible transi-
tions from quasi-regular to chaotic motion.>'*!*> Neverthe-
less, if we consider the qualitative changes of the quasi-regu-
lar motion we may separate the modifications associated
with the changes of the stationary points on the energy sur-
faces.

Some other model situations may be proposed which
result in effective Hamiltonians with the same formal struc-
ture as that mentioned above (from the point of view of the
structure of the classical limit manifold and that of the sym-
bol corresponding to the Hamiltonian of the quantum prob-
lem). The examples of such problems are : the rotational
structure of vibrational polyads of several electronic states,
the rotation structure of quasi-degenerate electronic states,
the overlap between vibrational polyads for one electronic
state, etc. We shall not consider them in detail and turn now
to the discussion of the group action.

B. The group action

The next step in the qualitative analysis is the evaluation
of the group action on the space of dynamic variables (phase
space). The definition of the group action means that each
point of the phase space is characterized by its orbit and its
isotropy group (called also the local symmetry group). The
orbit of a given point (x, ) includes all points which may be
obtained by symmetry transformation of x,. The isotropy
group of x, is a subgroup of the total symmetry group. It
includes those elements which transform x, into itself. An
equivalence relation in the orbit space may be introduced:
Two orbits are equivalent if they possess conjugated isotropy
groups. The set of equivalent orbits forms a stratum. It is the
division of the phase space into strata that is the final pur-
pose of the study of the group action. The importance of such
a division of the phase space into strata is due to the fact that
qualitative local behavior of a function invariant with re-
spect to a given symmetry group in the neighborhood of the
point x, is completely defined by the stratum which includes
X, rather than by the position of x,, within the stratum.

We shall name the process of the division of the phase
space into strata with respect to a symmetry group action the
stratification. There are two alternative ways for the study of
the stratification under different group actions.

First, we may analyze all existing symmetry groups
which may be considered as local symmetry groups of a
point in a phase space. For problems with two-dimensional
phase space the complete listing of such groups is well-
known. It consists of two-dimensional point groups.>? Fous-
dimensional point groups are known as well but their enu-
meration is much more cumbersome.’® The complete
analysis of the groups admissible as local symmetry groups
ina phase space of greater dimension is not of practical inter-
est from the physical point of view.

An alternative approach to the study of different local
symmetry groups is based on investigations of the stratifica-
tion of the phase space for a given molecular symmetry
group. For each molecular symmetry group this problem is
only technical and it may be easily solved for not very com-
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S

FIG. 1. Stratification of the two-dimensional sphere S 2, under the action of
the cubic symmetry point groups O, T, O,.

plicated groups. As a simple example, Fig. 1 shows the strati-
fication of the two-dimensional sphere S 2 under the action
of the cubic symmetry point groups O, T, O, It should be
noted that there are zero-, one-, and two-dimensional strata
for the groups O, and T, whereas there are zero- and two-
dimensional strata for the action of the group O on S 2. Thus,
the space of orbits (elementary cell) for the O, and T,
groups is a part of a two-dimensional plane with the bound-
ary being the one- and zero-dimensional strata. The space of
orbits for the O group action is itself the two-dimensional
sphere with three marked points—the zero-dimensional
strata.

The stratification of the phase space may be realized also
for much more complicated problems, for example in the
case of classical limit manifold for vibrational polyads
formed by triply degenerate vibrations. This manifold is the
complex projective space CP? which is a four-dimensional
real space.* It is important to remember also that the strati-
fication of the phase space for different molecular symmetry
groups and different types of vibrational operators may be-
come identical because it depends on the group images in a
given representation rather than on the initial symmetry
group and the representation realized on the dynamic vari-
ables. The construction of the group images is widely used in
the discussion of phase transitions.**>’ All group images for
the irreducible representations of the crystallographic point
groups are given in Refs. 56 and 58. The group images relat-
ed to the polyad structure of two- and three-dimensional
vibration problems are listed in Ref. 34.

As soon as the stratification of the phase space is given,
one can study the local qualitative singularities for each local
symmetry group in classical problems and study the corre-
sponding effects in quantum problems.

C. Classical symbol singularities and quantum effects

The qualitative changes on the two-dimensional energy
surfaces are connected with the variation and the stability of
stationary points. All generic singularities of energy func-
tions depending on only one parameter are discussed, for
example, in Ref. 30. The singularities are classified accord-

ing to local symmetry groups. We limit ourselves here with
the brief discussion of the critical phenomena appropriate
for local symmetry groups C,,, C,, C,. All these local sym-
metry groups possess the same critical behavior.*

The expansion of a function depending on one param-
eter Jbeing the integral of motion and on two variables x, y in
the neighborhood of a degenerate critical point J~J, in the
case of the C,, local symmetry group may be given in the
form

El(xyp) =Ey—a(J—J)X* + ay ) +agx®,  (7)

where the coordinates x, y are chosen in such a way that
x=0, y=0, J=J, correspond to a degenerate critical
point. For the rotational problem considered below in Sec.
III the x and y have clear physical meaning. They are the
coordinates of the stereographic projections on the z=J
plane of the top of the vector J defined in the body-fixed
frame. x,p coordinates simply show the precession of the
vector J around the stationary rotation axis, possessing in
this case the C,, local symmetry. An analysis of the surface
(7) close to a critical point shows that there are two types of
critical phenomena depending on the relative signs of the
coefficients a,, and a,, in the expansion (7). If a,, and a;,
have opposite signs, the critical phenomenon corresponds to
the formation of one stable point with C,, local symmetry
group and two equivalent nonstable stationary points with
lower local symmetry (broken C, symmetry). The modifi-
cation of the classical trajectory system for this critical phe-
nomenon is shown in Fig. 2. It should be noted that the
separatrix S remains the global curve and the critical phe-
nomenon considered is nonlocal. At the same time new lo-
calized states are formed as a result of the critical phenome-
non. These states are localized close to the stationary point
with the C,, local symmetry group.

The qualitative phenomenon mentioned above may be
suitably represented by a bifuraction diagram showing in
(EJ) coordinates the dependence of stationary energy
points on the parameter J. We indicate in Fig. 3 the stable
stationary points by a solid line and the unstable ones by a
broken line. The bifurcation diagram for the considered non-

L]
43 & ~—— S
S S
\__/
x x

/-\

e —

J<de J>Jde

FIG. 2. The system of classical trajectories for nonlocal critical phenomena
with C,, local symmetry group.
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(a) (b)

FIG. 3. Bifurcation diagrams for nonlocal (a) and local (b) critical phe-
nomena with C,, local symmetry group.

local critical phenomenon characterized by a broken C, lo-
cal symmetry is shown in Fig. 3(a). The integers in paren-
theses over the lines indicate the number of equivalent
stationary points existing for the problem considered. The
number 1 is not shown for the sake of simplicity. If the classi-
cal model exhibits a critical behavior, the corresponding
quantum problem is characterized by a redistribution of the
energy levels. New regular sequence of states must appear
(or disappear) under passing the parameter value over the
critical one. The wave functions of these states should be
localized close to the position of the new stable stationary
point in the phase space.

If the coefficients a,; and a,, in (7) have the same sign
the critical phenomenon is different. If, for example, a, a,,
and a,, all are of the same sign, the stationary stable point of
C,, local symmetry goes over into unstable one and two new
stable points equivalent with respect to C, operation and
close to the C,, symmetry point. The formation of two new
points is associated with the broken C, symmetry. The typi-
cal change of the trajectory set for this type of critical phe-
nomenon is shown in Fig. 4. The corresponding bifurcation
diagram is shown in Fig. 3(b). This critical phenomenon in
contrast to that mentioned above is a local one because the
qualitative modification of the function takes place in a lim-
ited region of the phase space variables. This fact follows

4y

J>Jl

J<le

FIG. 4. The system of classical trajectories for local critical phenomena
with C,, local symmetry group.

FIG. 5. Typical behavior of the energy level system of quantum problems
under the variation of the integral of motion J in the neighborhood of a
critical value for the local critical phenomenon with C,, local symmetry
group.

from the localization of the separatrix S at the critical value
of parameter J,.

The local character of the critical phenomenon enables
one to describe it by an universal Hamiltonian which shows
for the quantum problem the universal behavior of the ener-
gy levels for J values close to J,.*° The typical behavior of the
energy levels at J=J, is shown in Fig. 5.

It consists in the formation of pairs of levels (or groups)
from the regular sequence of states with appearance of a new
regular sequence of states. A more detailed discussion and
the general classification of the critical phenomena for the
model problems with two-dimensional phase space and dif-
ferent symmetry groups may be found in Ref. 30. In the next
section we discuss an example of molecular system which
shows one of the types of critical behavior mentioned above
under the increase of the rotational angular momentum.

Let us now consider the peculiarities of the energy level
system for a quantum problem corresponding, in the classi-
cal limit, to matrix symbols. These problems along with
qualitative features related to modifications of the set of sta-
tionary points for each energy surface possess singularities of
anew type caused by the appearance of degeneracy points on
the energy surfaces. In the general case the hermitian matrix
depending on K parameters possesses a (K — 3) dimension-
al subspace of degeneracy points.*® Thus, the problem with
two-dimensional phase space depending on one parameter
generically have degeneracy points for isolated values of the
parameter and for some discrete values of the phase vari-
ables. These degeneracy points are usually named conical
intersection points (or diabolic points). The typical behav-
ior of the two-dimensional energy surfaces near the degener-
acy point is shown in Fig. 6. In problems with four-dimen-
sional phase space and one parameter the degeneracy points
form generically a two-dimensional surface in a five-dimen-
sional space (four phase variables and one parameter). Thus
two possibilities arise: (i) A two-dimensional surface of the

J. Chem. Phys., Vol. 92, No. 3, 1 February 1990
Downloaded 09 May 2007 to 194.57.180.32. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Sadovskii et a/.: Bifurcations in molecular spectra 1529

>
>
>

-
-
-

‘.

J€<T = TIJ=T =

'\

*,

J>Tea

FIG. 6. Modification of the two energy surfaces showing the formation of a conical intersection (diabolic) pointat J=J,.

degeneracy points exists for a single value of the parameter;
(ii) A one-dimensional line of the degeneracy points on the
energy surfaces exists for a continuous region of the param-
eter variation. Symmetry requirements result in a much
wider class of generic qualitative changes. For their classifi-
cation the division of the phase space into strata should be
done and each stratum should be considered separately.

lil. THE MANIFESTATION OF BIFURCATIONS AND
DIABOLIC POINTS IN THE EXPERIMENTAL DATA
TREATMENT

A. Models for the experimental data treatment

In this section we consider the application of qualitative
methods for the analysis of the energy level structure in con-
crete systems of rovibrational states found from experimen-
tal data. We restrict ourselves with the rovibrational levels of
the v, /v, dyad of tetrahedral molecules. There are a lot of
very accurate experimental data for these molecules and the
corresponding energy levels are known with high precision
for a number of similar molecules such as CH,,** CD,,*
SiH, ,*' GeH,,*? and SnH,.%® The comparative analysis of
the v, /v, dyads for various molecules is very useful from the
point of view of the study of the generic origin of the qualita-
tive effects mentioned above.

Experimental data treatments are usually based on ef-
fective phenomenological Hamiltonians which are suitably

represented for highly symmetrical molecules in terms of
irreducible tensor operators®-

H=73 1 [v/*R[]", (8)
if

where V' are the vibrational operators having nonzero ma-
trix elements only within the considered block of vibrational
states. R" are the rotational operators, #, are the phenome-
nological coefficients which are the parameters fitted to ex-
perimental data. Different approaches make different

choices of the basis of tensor operators, different notations of
the phenomenological parameters and different schemes for
the inclusion of the terms in the phenomenological expan-
sion (8). This is mainly due to the fact that the general classi-
fication scheme which is based on the Born—Oppenheimer
smallness parameter y = (1/M)'/* (where M is the average
nuclei mass in the atomic units)®’ is rather crude and signifi-
cant deviations from it may exist which are caused in partic-
ular, by various degree of quasi-degeneracy of the vibration-
al states. Moreover, it is well-known, that the general
expansion (8) results in correlations between the param-
eters of the effective Hamiltonian. These correlations are due
to ambiguities among effective operators caused by unitary
transformations which do not change the form of the general
expansion (8) and the general classification in small param-
eter but vary considerably the numerical values of the pa-
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1530 Sadovskii et a/.: Bifurcations in molecular spectra

rameters within a given order of magnitude.®%*-"° Such am-
biguities were analyzed in detail by Watson for the effective
rotational Hamiltonians for the nondegenerate vibrational
states,®® and the general scheme for the construction of re-
duced Hamiltonians with unambiguous set of parameters
was proposed. Last year a detailed study of the ambiguities
of effective operators for spherical top molecules was per-
formed.**-”! Effective Hamiltonians for degenerate and qua-
sidegenerate vibrational states were analyzed. The explicit
determination of correlations between effective parameters
enables one to show the unitary equivalence between inde-
pendent treatments of experimental data™ and in some cases

to simplify the mathematical optimization procedure of the

parameter fitting which results in the possibility of including
additional high-order parameters to improve the quality of
fits.”!

We use in our qualitative study the two most complete
treatments of experimental data on the rotational structure
of the v, /v, dyads of *CH, and **SiH,.”>"* The parameters
of the phenomenological Hamiltonian (8) for methane and
silane in the notation of Champion et al.°>™™ are given in
Tables I and II.

For ?CH, the data fitted are line positions of the v, /v,
dyad measured with precisions of 0.000 06 and 0.000 12
cm ~ ' using, respectively, 0.0055 and 0.011 cm ~ ! resolution
spectra recorded with the Fourier Transform spectrometer
at Kitt Peak (U.S.A.). Using a sixth-order reduced Hamil-
tonian, the ground state and the v, /v, upper state param-
eters have been adjusted simultaneously. Standard devia-
tions of 0.065x 10~ * cm ~! involving data through J = 23
have been obtained. The majority of the predicted line posi-
tions have individual standard deviations of 10~*cm ' or
better. Further details are reported in Ref. 72.

For **SiH, infrared spectra of the v, /v, dyad were re-
corded with the Fourier Transform Spectrometer at Paris by
Valentin and Henry. The resolution of the spectrometer was
adequate to observe lines within the Doppler—Fizeau width.
A sixth-order reduced Hamiltonian, for the ground state and
the (0100) and (0001) interacting states was used to fit si-
multaneously all the parameters. A standard deviation of
10~* cm ™! involving data through J = 25 has been ob-
tained. This work corresponds to an extension at the sixth
order of the work reported in Ref. 73.

The presentation of the results of the data treatment in
the form of a parameter table (such as Tables I and II) is not
suitable for the purpose of the study of the intramolecular
dynamics because it is practically impossible to make any
even qualitative conclusions about the energy level system or
about wave functions from the parameter values without nu-
merical solution of the complete quantum problem. From
another point of view the energy level system itself surely
exhibits some clear qualitative features and regularities un-
der Jvariation (see Figs. 7and 8). The evidence for branches
of rotational levels in the energy spectra and the redistribu-
tion of energy levels between different branches under the
rotational excitation are crude examples of such qualitative
features. The existence of rotational clusters and the modifi-
cation of the cluster structure under J increase represent
more sophisticated features.

Before going to the discussion of concrete molecular
systems we formulate some possible advantages that the ap-
plication of the qualitative methods may yield for molecular
studies.

TABLE L v, /v, Hamiltonian parameters of *CH,.

UMKT) r, r, Values (standard deviation)
0(04,) 0100 E 0100 E 1533.332 586(20)
2(04,) 0100 E 0100 E 00 R*

2(2E) 0100 E 0100 E —2.761 672(53) x 1072
3(34,) 0100 E 0100 E 1.626 21(37)x10™*
4(04,)) 0100 E 0100 E —4.0488(32)x10~°
4(2E) 0100 E 0100 E —8.02(12) x 1077
4(44)) 0100 E 0100 E 00 R

4(4E) 0100 E 0100 E 0.0 R

5(34,) 0100 E 0100 E 00 R

6(04,) 0100 E 0100 E — 1.568(48) x 10~°
6(2E) 0100 E 0100 E - 6.85(18) x 10~ '°
6(44,) 0100 E 0100 E — 8.38(76) x 10~ "
6(4E) 0100 E 0100 E 1.4(16) x 10~ "
6(64,) 0100 E 0100 E 00 R

6(6F) 0100 E 0100 E 5.95(15)x 101
1(1F)) 0100 E 0001 F, —9.312 274(26)
2(2F) 0100 E 0001 F, —7.59135(13) 1072
3(0F) 0100 E 0001 F, —5.238 53(75) X 10*
3(3F)) 0100 E 0001 F, — 2.0435(40) x10~*
3(3F,) 0100 E 0001 F, ~1.2907(77) x10~*
4(2F,) 0100 E 0001 F, 8.077(61)x 1077
4(4F)) 0100 E 0001 F, —6.4(11)x1077
4(4F,) 0100 £ 0001 F, —1.432(13) x10~*°
5(1F)) 0100 £ 0001 F, — 1.290(43) x 10~*
5(3F) 0100 E 0001 F, 1.67(11)yx10~*
5(3F,) 0100 E 0001 F, —3.11(16)x10°*
5(5F,) 0100 E 0001 F, 1.40(15) x10~*®
5(5F) 0100 E 0001 F, —1.073(13) x10~*
5(5F,) 0100 E 0001 F, —7.16(23)x10~*
6(2F,) 0100 E 0001 F, 1.230(58) x 101
6(4F)) 0100 E 0001 F, 4.62(11)x10-"
6(4F,) 0100 E 0001 F, 1.13(12) x 10—
6(6F,) 0100 E 0001 F, 3.42(31)x10™"°
6(6F,) 0100 E 0001 F, 2.27(15)x 107"
6(6F.,) 0100 E 0001 F, 2.2(34)x107"

0(04,) 0001 7, 0001 F,
1(1F)) 0001 F, 0001 F,
2(04,) 0001 F, 0001 F,
2(2E) 0001 F, 0001 F,
2(2F,) 0001 F, 0001 F,

1310.761 621 6(97)
10.346 259 8(28)
—5.61036(34)x 103
—2.95718(53) x10~?
—3.153379(42) X 1072

3(1F,) 0001 F, 0001 F, 0.0 R
3(3F) 0001 F, 0001 F, —2.6828(11)x 10~*
4(04,) 0001 F, 0001 F, 0.0 R

4(2E) 0001 F, 0001 F, —6.912(33)x 10"’
4(2F,) 0001 F, 0001 F, 00 R

4(44,) 0001 F, 0001 F,
4(4E) 0001 F, 0001 F,
4(4F,) 0001 F, 0001 F,
S(1F,) 0001 F, 0001 F,

—2.19(13)x 1077
2.184(15) x 10™*°
2.3767(17yx 10~°
5.13(12) x10~°

5(3F)) 0001 F, 0001 F, 00 R
5(5F,) 0001 F, 0001 F, 0.0 R
5(5F,) 0001 F, 0001 F, 0.0 R
6(04,) 0001 F, 0001 F, 1.370(30) X 10~
6(2E) 0001 F, 0001 F, 00 R
6(2F,) 0001 F, 0001 F, 4.22(15)x 1010

6(44,) 0001 F, 0001 F,
6(4E) 0001 F, 0001 F,

1.351(75) x 10~'°
— 1.72(34) x10~'°

6(4F,) 0001 F, 0001 F, —42(12)X 10"
6(64,) 0001 F, 0001 F, 3.14(10) X 10~ "
6(6E) 0001 F, 0001 F, 0.0 R
6(6F,) 0001 F, 0001 F, 0.0 R

6(6F,) 0001 F, 0001 F, 5.10(26) x 10~ %

#0.0 R means: fixed by reduction of the Hamiltonian. All values in cm™—".
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TABLE II. v, /v, Hamiltonian parameters of *SiH, .

QUKT) r, r, Values (standard deviation)
0(04,) 0100 E 0100 E 970.934 354(92)
2(04)) 0100 E 0100 E 0.0 R*

2(2E) 0100 E 0100 E —9.8160(19) x 1073
3(34,) 0100 E 0100 E 6.9983(69) x 103
4(04,) 0100 E 0100 E — 1.076(11) x 10~°
4(2E) 0100 E 0100 E — 1.561(52) x 107
4(44)) 0100 E 0100 E 00 R

4(4E) 0100 E 0100 E 00 R

5(34,) 0100 E 0100 E 00 R

6(04,) 0100 E 0100 E 00 R

6(2E) 0100 E 0100 E 0.0 R

6(44,) 0100 E 0100 E —2.46(40) x 107"
6(4E) 0100 E 0100 E — 1.67(14) X 107"
6(64,) 0100 E 0100 E 0.0 R

6(6E) 0100 E 0100 E 1.29(11)x 10~ "
1(1F) 0100 E 0001 F, — 5.069 657(52)
2(2F,) 0100 E 0001 F, — 2.407 65(36) X 102
3(1F) 0100 E 0001 F, —1.6251(12) x10~*
3(eF)) 0100 E 0001 F, —3.9041(77) x 10~°
3(3F,) 0100 E 0001 F, —2.5010(70) x 10~*
4(2F,) 0100 E 0001 F, 8.96(35) x 10~*
4(4F)) 0100 E 0001 F, 1.41(10) X 10~*
4(4F,) 0100 E 0001 F, —6.22(61)x107*
S(1F) 0100 E 0001 F, 49(16)x10™'°
S(3F)) 0100 E 0001 F, 1.35(20) x 10~°
S(3F,) 0100 E 0001 F, 4.79(24) x 10~°
S(5F)) 0100 E 0001 F, —2.321(59)x10™°
5(5F,) 0100 E 0001 F, — 1.35(10) X 10~°
S5(5F,) 0100 E 0001 F, —6.12(47)x10™°
6(2F,) 0100 E 0001 F, —7.29(84) x 10~ "
6(4F)) 0100 E 0001 F, 1.12(87) x 10~
6(4F,) 0100 E 0001 F, —9.81(90) x 10~ "
6(6F,) 0100 E 0001 F, 9.8(12) x 10~ "
6(6F,) 0100 E 0001 F, —3.8(11)x 10~ "
6(6F,) 0100 E 000t F, 1.8(61) x 10~ "2
0(04,) 0001 F, 0001 F, 913.468 776(67)
1(1F)) 0001 F, 0001 F, 6.027 106(13)
2(04,) 0001 F, 0001 F, 3.990(15) x 10~*
2(2E) 0001 F, 0001 F, —3.0767(22) X 10~?
2(2F,) 0001 F, 0001 F, — 1.209 79(19) X 102
3(1F) 0001 F, 0001 F, 0.0 R

3(3F) 0001 F, 0001 F, — 1.160 69(97) x 10—*
4(04,) 0001 F, 0001 7, 00 R

4(2E) 0001 F, 0001 F, —2.764(52) X107’
4(2F,) 0001 F, 0001 F, 00 R

4(44)) 0001 F, 0001 F, —8.21(19)x 10°*®
4(4E) 0001 F, 0001 F, 6.918(89)x 1077
4(4F,) 0001 F, 0001 F, 7.367(72)x 1077
5(LF,) 0001 F, 0001 F, 2.01(15) X 10~°
S(3F,) 0001 F, 0001 F, 00 R

5(5F,) 0001 F, 0001 F, 00 R

5(5F)) 0001 F, 0001 F, 00 R

6(04,) 0001 F, 0001 F, 8.5(12)x 10~ "
6(2E) 0001 F, 0001 F, 00 R

6(2F,) 0001 F, 0001 F, — 1.556(96) X 10~
6(44,) 0001 F, 0001 F, 2.13(33)x10~"
6(4E) 0001 F, 0001 F, 00 R

6(4F,) 0001 F, 0001 F, — 1.87(14)Xx 107"
6(64,) 0001 F, 0001 F, 00 R

6(6E) 0001 F, 0001 F, 00 R

6(6F,) 0001 F, 0001 F, 00 R

6(6F,) 0001 F, 0001 F, 8.9(16) x 10~ "

*0.0 R means: fixed by reduction of the Hamiltonian. All values incm™".

The application of qualitative analyses enables us to rep-
resent the results of data treatments in a more compact and
clear form by indicating bifurcation and diabolic points
which are present in a given molecular system. New princi-

ENERGY (CM-1)
1700 1700
CALCULATED ENEAGY LEVELS
1600 1800
1500 1500
]
ey,
1400 - 1400
H
1300 1300
1200 1200
bl
gy F—
1100LSMIL . . . ~—l1100
o 5 10 15 20 28

QUANTUM NUMBER J

1531
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ples for the phenomenological Hamiltonian construction
may be developed on the basis of the inclusion into the effec-
tive Hamiltonian of those terms which are of primary impor-
tance for the proper description of the possible qualitative
changes. The location of the peculiarities in the energy spec-
tra enables one to predict the preferable regions for the ex-
perimental spectroscopic study because the detailed investi-

_gation of a molecular system in a region close to singularity
points gives in principle much more information about the
intramolecular behavior than the wide study of the regular
sequences of states. It is hoped that the knowledge of singu-
larities may yield more reliable extrapolations to higher J
values and to similar molecular systems.

B. Critical pheomena (bifurcations) in the rotational
structure

The qualitative analysis of the effective rotational Ham-
iltonian (8) (Tables I and II) from the point of view of the
appearence of degenerate critical points on the energy sur-
faces shows that for both ?*SiH, and '*CH, the critical phe-
nomenon associated with the C, local symmetry breaking
under J variation is present. This critical phenomenon re-
sults in the appearance of a new stable C, rotation axis in-
stead of an unstable one with the simultaneous appearance of
a pair of unstable rotation axes close to each C, one. (See
Figs. 2,3 and the corresponding discussion in Sec. III C).
This critical phenomenon occurs in the lower of the two
branches of the v, (E) state. Figure 9 shows the fragment of
the energy level system for the v, /v, dyad of *SiH, along-
side with the energies of the stationary points on the rota-
tional energy surfaces. To simplify the figure we show only
the energies of the C,, C,, and C, axes. The stability of a
stationary point on the energy surface is characterized by the
Hessian value. As soon as the rotational energy surface
E’(6,p) depends on two phase variables (6,p) defined on
the sphere S 2 (the classical limit manifold) the Hessian of
the energy surface E'(6,p) may be written in its standard
form [(F?E/36%) + (I*E/3¢?) — (3*E /36 dp)]1(1/
sin” ). The Hessian is the determinant of the matrix of sec-

o Re3-2 12—

IR RN AR

Angular momentum J

FIG. 9. Comparison between the energy level system and the classical ener-
gies of the C,, C;, C, stationary rotation axes in the neighborhood of the
C,, critical phenomenon for the v, vibrational state of 2*SiH,. X-C, axis
energy, [-C, axis energy, O-C, axis energy.

ond derivatives. So it is equal to the product of its eigenval-
ves, which for the stationary points completely characterize
its stability. The Hessian is positive for maxima and minima
and it is negative for saddle points. If the Hessian is equal to
zero the stationary point is degenerate. Therefore, the Hes-
sian passing through zero indicates the bifurcation. One
must remember only that our rotational energy surface £/
(6,) depends on the parameter J, the total angular momen-
tum value and therefore the Hessian is J dependent. Figure
10 shows the Hessian value for the C, stationary axis for the
lower branch of the E state. It is clear that the C, axis be-
comes a stable one at J= 11. Consequently, the formation of
12-fold rotational clusters is to occur for J> 11. From the
qualitative point of view the wave functions corresponding
to the energy levels forming 12-fold cluster differ significant-
ly from some other functions due to their specific localiza-
tion related to the localization of the corresponding classical
precession motion of the angular momentum close to one of
the equivalent C, axes.

The transitions to the levels incorporated into 12-fold
clusters are present in the experimental data. Tables IIT and
IV show 12-fold clusters existing in the energy level system
of CH, and SiH,. An analysis of these transitions shows that
the rotational levels of the ground vibrational state from
which the transitions are observed to lie in the neighborhood
of the separatrix for the energy surface of the ground vibra-
tional state. The transitions of this type, although being not
very intense, are nevertheless the most intense among other
transitions because the wave functions of the ground state
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FIG. 10. Hessian values for the stationary C, rotation axis for the classical

energy surface corresponding to the lower branch of the v, state of *SiH, .

+ is the energy of stationary points with C, local symmetry on the rota-

tional energy surface. 4 is the Hessian value for C, type stationary points.
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TABLE III. 12-fold rotational clusters in the energy spectrum of '*CH, .

TABLE IV. 12-fold rotational clusters in the energy spectrum of *SiH, .

Separation in energy Separation in energy
J symmetry type and from the closest J symmetry type and from the closest
energies of levels Cluster energies of levels Cluster
in the clusters width  Upper level Lower level in the clusters width  Upper level Lower level
(em™") {em™)  (em™")  (em™") (em™") (em™)  (em™)  (em™h

12 F 13 2357.904 788 14 4, 5 1581.605 667
12 E 9 2357.860 680 14 F, 15 1581.539 325

12 F 12 2357.740 393 0.55 10.5 0.5 14 F 15 1581.479 692 0.26 16.2 0.5
12 F 13 2357.630423 14 E 10 1581.387 901
12 4, 4 2357.355 851 14 F 14 1581.342 038
13 F 14 2494.569 540 15 F 16 1668.100 683
13 E 9 2494.467 041 15 E 11 1668.013 921

13 F, 14 2494.348 674 0.33 12.1 1.0 15 F 16 1667.969 200 0.22 17.9 0.7
13 4, 5 2494.300 630 15 A4, 5 1667.935 175
13 F 13 2494.237 198 15 F 15 1667.885 390
14 A4, 5 2641.567 524 16 F 17 1760.262 672
14 F, 15 2641.484712 16 E 11 1760.256 652

14 F 15 2641.417247 0.34 13.8 1.1 16 F 16  1760.180643 023 19.6 1.0
14 E 10 2641.247288 16 F 17 1760.121334
14 F, 14 2641.221743 16 A4, 6 1760.033 110
15 F 16  2798.764 098 17 F 18 1858.108 758
15 4, 5 2798.720 861 17 A4, 6 1858.066 133

15 F 16  2798.684 588 0.30 15.3 1.5 17 F, 18 1858.055 310 0.16 21.0 1.0
1S E 11 2798.621 582 17 E 12 1858.027 375
1S F, 15 2798.458 606 17 F 17 1857.947 292
16 F, 17 2966.264 290 18 4, 6 1961.605 533
16 E 11 2966.247 810 18 F 19 1961.564 805

16 F, 16  2966.155522 0.32 17.0 1.7 18 F 19 1961.521797 0.14 224 1.3
16 F 17 2966.071832 18 E 13 1961.470811
16 A4, 6 2965.952947 18 F, 18  1961.466 926
17 F 18 3144.000 141 19 F, 20 2070.662 857
17 E 12 3143911174 19 E 13 2070.611973

17 F 18  3143.863 189 0.23 18.0 1.9 19 F 20  2070.602 380 0.11 23.8 13
17 A4, 6 3143.841 769 19 4, 7 2070.596 850
17 F 17 3143.775 683 19 F 19 2070.548 881
20 F 21 2185316318
20 E 14 2185315889

20 F 20 2185283252 0.10 25.3 L5
20 F 21 2185.249 474
20 4, 7 2185.211 596

must be sufficiently spread (delocalized) to overlap with the
rotational wave functions of the upper vibrational state
which are localized close to C, axes.

In order to show that 12-fold clusters may be easily sep-
arated from other levels we list in Tables IIT and IV the
widths of the clusters and their separation in energy from the
closest levels.

It should be noted that the appearance of 12-fold clus-
ters was predicted by using the simple effective Hamiltonian
for E state including only two tensor contributions®':

H = [(a;' @) *R**E )" + u[ (a5 a,)*R* 42} 4

9

The classical problem for the Hamiltonian (9) can be

solved exactly and yields the following dependence of the

stationary points on the angular momentum quantum num-
ber J:

E(C,) =42/3) 21T + 1),
E(C) =2(2/3)2I(J + 1),
E(Cy) = 22)'21(J + 1)/9,

E(C,) =2+ D{2[1 — (36/Z) + (432/Z2%)1/3}'3,
(10)

where Z =32 uJ(J+ 1).

The positions of the stationary C,, C;, C, axes do not
change under the variation of J. The stationary axes C exist
only for Z > 24 and change their orientation with Z in accor-
dance to the relations

p=mu/4, cos’O=1-—24/Z (11)
which we give for one of the 24 equivalent C, symmetry
stationary points. The critical phenomenon for Hamiltonian
(9) is identical to that discussed in Sec. II and demonstrated
above for more complicated effective Hamiltonian for the
CH, and SiH, molecules. It is interesting to note that using
the very simple model Hamiltonian (9) with the numerical
values of the parameters taken from the experimental treat-
ment for the isolated E state model one gets the critical value
of J close to the one actually observed. At the same time the
transformation of the effective Hamiltonian for isolated E
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state to the one for resonance model™ shows that whereas
the parameter 5%® changes slightly the variation of the
5,542 parameter is very drastic. Therefore we may conclude
that the qualitative phenomenon of the appearance of new
stationary C, axes and the formation of 12-fold rotational
clusters in the energy spectrum is mainly due to the interac-
tion between the v, and v, vibration bands. This note may be
useful for the study of microscopic theory of critical phe-
nomena in spherical top molecules.

C. Energy level redistribution and diabolic points

The qualitative phenomena of the redistribution of rota-
tional levels between branches in the rovibrational energy
spectrum is clearly seen in Fig. 8 representing the energy
levels for the v, /v, dyad of SiH,. A similar situation takes
place for CH, molecule (Fig. 7) but at much higher Jvalues.

The redistribution of the levels between the F + and FO
branches of the v, vibrational state is particularly evident in
Fig. 8. Under J increase the eight-fold cluster goes from the
F + tothe FObranch. It is seen also that the six-fold cluster
begins to go from the lower branch of the v, statetothe F +
branch of v, but this transition is less clear for the J values
considered.

In Sec. II C we have shown using a simple model that
the redistribution of energy levels may be interpreted by the
formation of a diabolic point for two energy surfaces. Under
such a supposal the redistribution of six- or eight-fold clus-
ters is due to the formation of six- or eight-fold diabolic
points equivalent by symmetry. This means that the redis-
tribution of the sixfold (eightfold) clusters is associated with
the formation of a diabolic point with C, (C; ) local symme-
try group. It may be easily verified by the classical analysis of
the corresponding quantum Hamiltonian. Figure 11 shows
the energy levels of the v, /v, dyad of SiH, along with the
results of the classical analysis of all five energy surfaces. The
energy of the C,, C,;, C, stationary points for each energy
surface is shown. It is clear from Fig. 11 that for the SiH,
molecule the formation of diabolic points between F + and
FObranches for the v, state takes place at J~ 19. The conical
intersection point for the F + branch and the lower E state
branch is present at J~23. Moreover, there is a tendency to
form the diabolic point between the F0 and F — branches of
the v, state at J=~30. The comparison of SiH, and CH,
energy levels (Figs. 7 and 8) indicates that the same phe-
nomena are appropriate for CH, but for higher J values.
This is probably due to the larger difference between the
vibrational frequencies for CH, with respect to SiH,. The
closer resonance of the v,/v, dyad in SiH, favors the redis-
tribution of the energy levels at lower J values. The compari-
son of the CH, and CD, energy level systems verifies this
conclusion.

Let us now give the qualitative explanation of the ob-
served typical effect of redistribution of the energy levels for
the v, /v, dyad of tetrahedral molecules by using the sim-
plest model. To do this we try to interpret this phenomenon
in terms of recoupling of the vibrational and rotational angu-
lar momenta for the vibrational states considered. First of all
we eliminate the tetrahedral structure which in some sense is
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FIG. 11. The system of energy levels and the energy of the C,, C,, C, sta-
tionary points of the classical energy surfaces for the v, /v, dyad of *SiH, .
X -energy of C, axis, O-energy of C; axis, O-energy of C, axis.

a fine structure with respect to the distribution of branches
we are discussing. We may do this by imposing the addi-
tional requirements for the rovibrational model Hamilto-

nian to be invariant with respect to the three-dimensional

rotation group SO(3). To do this we must indicate the irre-
ducible representation of the SO(3) group according which
the vibrational operators are transformed. The simultaneous
treatment of the v, /v, dyad enables us to consider five vibra-
tional annihilation (or creation) operators a7, a7, af*, a}*, al*
as transforming according to the irreducible representation
of SO(3) having the weight 2.7° In such a case all rovibra-
tional irreducible with respect to SO(3) operators which
may be included in the effective Hamiltonian may be written
in the form

[(V+(2)V(2))(K)Rn(l()](o)’ (12)
where the index X is the rank of the operators with respect to
the SO(3) group. We have generally five rovibrational oper-
ators for each value of (2 — K) = 0,2,4,... . The definition
of the SO(3) irreducible tensor operators may be naturally
given in terms of the chain of groups SO(3) D0
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(V+@OVI) W = (KK + 1)!/?

F ¥4

X [F;llz EKZZK (Vp-:- (Z)V;f))(p)’

(p) = (nI), (13)

where K22 X are the isoscalar factors for the chain of groups
SO(3)Do0.

All rovibrational states of the v, /v, dyad under the ad-
ditional supposal of SO(3) symmetry are divided into five
branches characterized by an auxiliary quantum number
R =J +2,J + 1,J. The so obtained classification is a natu-
ral generalization of the well-known classification of rovi-
brational states for a F, vibrational state split by Coriolis
interaction. There are several schemes based on approximate
SO(3) symmetry for the construction of the effective Hamil-
tonian of tetrahedral molecules.”® For our purposes it is im-
portant to take into account the lower in the rotational angu-
lar momentum terms [which are the most important ones
from all terms of the form (12)] yielding the distribution of
the energy branches in the energy spectra specified by the
following sequence of R values:J + 2,J + 1,J,J — 1,J — 2.
Eachbranchhas (2R + 1)-fold degenerate levels. Wedonot
take into account the (2J + 1)-fold degeneracy caused by
different projections of the total angular momentum on the
laboratory fixed frame.”

The structure of branches which we obtain for the mod-
el mentioned above is similar to those taking place in tetrahe-
dral molecules at the limit of sufficiently high J values. In-
deed from Fig. 8 we see that after three consecutive
redistributions of the energy levels between F + and FO,
lower Eand F + , F0and F-branches the resulting pattern is
characterized by the following numbers of states in the
branches: 2(J +2)+1, 2 +1)+1, 27 +1,
2(J—1) + 1, 2(J — 2) + 1 with the energy increase. This
effect has clear physical meaning. The Coriolis interaction
(diagonal plus nondiagonal) is responsible for the formation
of the branch structure in those regions of J values where the
Coriolis splitting is larger than the v, — v, vibrational fre-
quency difference.

Let us now take into account the most important terms
leading to the breakdown of the SO(3) invariance. The lead-
ing term is surely the splitting of purely vibrational states,
i.e., (v, — v, ) difference. Therefore we consider the model
Hamiltonian including two operators only

H=Av(V,, —V,,) +t[(VF OVE)IRO]O (14)

The first term is the detuning of the vibrational reso-
nance. The second term is the Coriolis interaction between
the v, and v, states under the supposal of SO(3) invariance.
The energy level system and the results of the classical analy-
sis of the model Hamiltonain (14) is presented in Fig. 12.
For low J values two groups of levels may be associated with
the rotational structure of the v, and v, vibrational states
because the (v, — v,) term is the leading one. The Coriolis
interaction results in the splitting of triply degenerate F,
state into three branches and to splitting of E state into two
branches due to nondiagonal interactions. For higher J val-
ues the Coriolis interaction becomes the most important one
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FIG. 12. Energy level system versus classical energies of the stationary C,,
C,, C, axes for the model Hamiltonian (14). The notations are the same as
in Fig. 11.

in Eq. (14). It leads to another distribution of the rotational
branches whereas the tetrahedral splitting of each branch is
exclusively due to the broken SO(3) symmetry caused by
the (v, —v,) term. The transition from one system of
branches to another under J increase is connected to the
formation of three conical intersection points. Therefore,
from the qualitative point of view the redistribution of the
energy levels between the branches for the model Hamilto-
nian (14) is in agreement with that observed for the SiH,
and CH, molecules (Figs. 7, 8, and 11). To verify the appli-
cation of the model Hamiltonian (14) to a qualitative de-
scription of rovibrational states of tetrahedral molecules we
must demonstrate that we take into account all the most
important terms in the classification scheme based on cubic
molecular symmetry group rather than on approximate
SO(3) classification scheme. The difference between these
two schemes lies in the number of independent operators of
the first order (linear in the angular momentum operators).
If we suppose the SO(3) invariance of the rovibrational
Hamiltonian there is only one operator linear in J,,

[(V+ @y@)RI]©, (15)

The classification scheme based on cubic symmetry
group gives two independent operators linear in J,,

J. Chem. Phys., Vol. 92, No. 3, 1 February 1980
Downloaded 09 May 2007 to 194.57.180.32. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1536 Sadovskii et al.: Bifurcations in molecular spectra

TABLE V. The Coriolis interaction parameters for tetrahedral molecules.

Molecule 2CH, 2CD, BSIH,
Av 222.57 93.78 56.97
1(LF)

U4
—0.9310 —1.3794 —0.9275
10LF)
Usa

"GeH,

109.21

—0.6894

I2OSHH4 a
72.64 0
— 0.6889 —\2

®The case of strict spherical symmetry.

[(—)(V+EVF2)F|RI(LF|)]A|’
[(—)(V+szFz)FlRl(l.FJ]A-’ (16)

where "7A = /(A — A™).

The phenomenological Hamiltonian invariant with re-
spect to the cubic symmetry group O up to terms linear in J,,
must include the two operators (16) with independent coef-
ficients. The scheme based on SO(3) supposed symmetry
admits the only operator linear in J, which is the linear
combination of two operators (14) with fixed coefficients

[ (V + (2)V(2))(I)R(l)](0)
— (5)—1/2[ (a+anFz)FlRl(l'Fl)]A'

_ (2/5)”2[(_)(a+EaF1)F'R‘“’F')]"'. (17)

Let us now consider whether the restriction imposed by
fixed coefficients in (14) is a serious one for real molecular
systems. The numerical comparison of the coefficients
135 FOE and t}FOFF of the nondiagonal and diagonal
Coriolis terms shows that the ratio of these coefficients for

the v,/v, dyad of tetrahedral molecules is close to ( — y2)
[appropriate for the SO(3)invariant combination (17), see
Table V]. Moreover, the parameter of the nondiagonal Cor-
iolis term of the first order for the v,/v, dyad may vary
considerably due to the ambiguity of the effective Hamilto-
nian. Therefore, the effects caused by deviation of the linear
combination of the Coriolis interaction operators from the
SO(3) invariant operator (17) are of second order. The op-
erator (14) is accurate up to the second-order terms and it
properly describes the redistribution of the energy levels
between different branches in the energy spectra. The redis-
tribution phenomenon itself may be interpreted as the recou-
pling of the vibrational and rotational angular momenta un-
der increase of the angular momentum quantum number.

IV. CONCLUSION

We have shown the rich possibilities which the method
of the qualitative analysis yields for the investigations of
complex molecular spectra. In conclusion we want to stress
the following points.

(1) Qualitative methods enable one to clearly visualize
the complicated effective Hamiltonian and to find their gen-
eric qualitative changes.

(2) The general phenomenological classification of the
generic qualitative changes is based on the number of dy-
namic variables and on the molecular symmetry group.

(3) The proper knowledge of the singularities (bifurca-
tion and diabolic points) is of primary importance for an
adequate description of the dynamical systems. According-
ly, it is desirable to perform the experimental study of molec-
ular systems close to the peculiarities of the energy spectra.

(4) The reasonable extrapolation of the experimental
data for the same molecule or within some class of molecular
systems might take advantage of a proper description of the
qualitative changes, i.e., the singularity points.

(5) Along with the phenomenological Landau type the-
ory of the qualitative changes discussed above the further
next step is the formulation of the microscopic theory of
qualitative changes.

(6) From the point of view of their possible applications
to the study of qualitative features of excited states of quan-
tum systems with small finite number of degrees of freedom,
a more general comparative analysis of the qualitative meth-
ods of macroscopic physics is needed for further develop-
ments.
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