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Several semi-rigid model hamiltonians are constructed for calculation of the vibration—rotation spectra of nonrigid tri-
atomic molecules with diatomic rigid core. The models proposed are applicable to molecules with an elliptical nonrigid  ~
trajectory. This means that the potential energy surface corresponding to the interaction between the external atom and
tigid core possesses minima close to elliptical surface. Such molecles as MCN (M = Li, Na, K) are appropriate examples.

1. Introduction

In recent years considerable interest has awoken in the investigations of nonrigid ionic or van der Waals mole-
cules (see, for example, reviews [1,2]). The simplest molecules of this type are the triatomic molecules composed
of a diatomic rigid core and an atom which can move almost freely around this core. MCN jonic molecules (M is
an alkali mstal atom) or'van der Waals complexes (ArO,, ArHC1, ArN,) are appropriate examples.

In this paper we generalize the method proposed earlier [3—5] for the calculation of vibration—rotation levels
for nonrigid triatomic molecules with diatomic rigid core. We have developed the elliptical model which enables
us to treat the problem with a highly nonspherical potential for the external atom motion.

We must take into account the chemical structure of the molecules to make the proper choice of intemnal varia-
bles. It is known [6] that for LiCN type molecules almost free rotation of the cation takes place at rather high
temperatures. If we suppose the LiCN molecule to be composed of ions (the so-called ionic model) we can indi-
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" Fig. 1. Trajectories of nonrigid cation motion for different relative sizes of the ions.
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cate the possible ways of the cation motion. This way will be called the nonrigid trajectory. The corresponding
motion is the bending motion. Fig. 1 shows the possible ways of the cation depending on the size of the cation
and anions. It can be seen that this trajectory may take the form of a slightly or strongly deformed ellipsoid and

a slightly deformed sphere. The radial vibration of the cation seems to have a rather high frequency and small am--
plitude. For example, the Ismail data [7,8] show that the radial frequency for MCN molecules in an inert gas ma-
trix is several times larger than the bending mode. So the ionic molecules have in essence only one large amplitude
coordinate, but this coordinate is very complicated. The slightly bound van der Waals complexes surely possess
two large-amplitude coordinates, bending and radial ones, but these coordinates are almost independent. The ex~
perimental data on the ArO, and AN, molecules support this suggestion [9,11].

We have considered earlier the simplest model for a triatomic molecule with two large-amplitude coordinates
{4]. To describe the position of the atom moving around the rigid diatomic core we used spherical coordinates
which were supposed to be nonrigid ones. We call such model a spherical one. This model is well suited for the -
kinetic energy representation, but the potential energy may have a rather complicated form depending on the mole-
cule. So the procedure developed in ref. [4] requires rather elaborated calculations in some cases due to the crude
separation of nonrigid variables.

The purpose of the present article is to improve initial approximate hamiltonians which result in the construc-
tion of the basis for variational calculations. Here we propose a model adapted to the nonrigid trajectory of ellip-
tical form. We investigate two possibilities. Firstly we use a change of variables which transforms the elliptical tra-
jectory into a spherical one. In this case the kinetic energy operator may be written as the sum of the operator for
the spherical case and some additional terms responsible for deviations of the real operator from the spherical one.

Even in the case when the trajectory may differ from an elliptical one we propose to use the same change of varia-
bles, because such a procedure results in a rather simple form of the kinetic enersy onerator
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On the other side we can use elliptical coordinates. We have shown that in spite of the complicated form of the
kinetic energy operator it is possible to construct some effective one-dimensional equations for the description of
the vibration—rotation problem. In this paper we consider only triatomic molecules but the method proposed may
be easily generalized to molecules composed of an atom possessing almost free motion around a linear rigid core
(ArOCS is an appropriate example {121). The generalization to the case of “nonlinear rigid core + atom” systems
is also possible.

2. Total hamiltonian

The vibration—rotation hamiltonian for triatomic molecules in cartesian coordinates has the form

1 1 —
=—0— A_ A_ + - 1
2= 2m, Ty 2m A.l’b 2m V(lr )’ W
where 7,, 7y,, T, are vectors characterizing the positions of the atoms in a laboratory fixed coordinate system. We
assume that a and b form the rigid core and atom c moves around this core. We use Jacobi coordinates to separate
the centre-of-mass motion (fig. 2):

Fig. 2. Jacobi coordinates for a triatomic system.
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Ec.m_ = (maFa + meb + mc?c)/(ma + mb + mc) ? ’ (2)

R= ?b - Fa, 7= 70 - (ma?.a + mb-Fb)/(ma + mb) -
In Jacobi coordinates the hamiltonian (1) may be rewritten as

=L A LA 1
He—5-Az -3~ A

_  +U(R. T
om. 2, 2R zﬂzA’ V(R,T),

1

M=m,+my +m_, yl_l =ma_1 tmy o, 1.51 =(ma+mb)‘1 +mc‘1 . 3

Now we transform the hamiltonian to the molecule-fixed coordinate system. 1t is suitable to use the coordinate
frame connected only with the rigid core and take the hamiltonian introduced earlier for diatomic molecules
[13,14] '
1 ( 32 29 ) 1 1 2
=———=tS|—-7 A+ 2+L2 ~(LE+ L J_+L_J)]+ V(R 1 0). ©@
2#1 aR2 ROR 2[12 r 2#1R2 z
Here L,, [,y, L, are the angular momentum operatoss for the particle associated with the vector , L, =L, * iLv,
J is the operator of the total angular momentum. The z-axis of the body fixed coordinate system aligns along the
vector R. ¥ has the spherical coordinates, r, 8, ¢ in the body fixed system. The coordinates R, r, § are the internal
ones. Let us now average the hamiltonian (4) over the rigid variable R with the vibrational wavefunction. We ob-
tain the effective operator, describing the nonrigid internal motion and the rotation of the sysiem as a whole. This
effective operator surely corresponds to some concrete vibrationalstate of the rigid core
H=——LA_+—1—[J2+L2—(2L2+L J_+L_J)N VT, 0 )
2uy 7 2u1R(2) z T T
Here V{r, 8) is the potential (R, r, 6) averaged over the variable R. Ry is some effective value of R resulting from
the averaging of 1/R2 with the vibrational wavefunction. The operator (3) is the initial one for the further use.
When the potential can be represented in the form

Vr, 0) =V (N + Ve(6) + W(r,0),

where W(r, 6) is small, the separation of variables in spherical coordinates is a rather good approximation. The re-
sulting auxiliary operators

1 2 2 1 1 2
Hy= [P —QL2+L,J +L_JD] +( +——)L + V(D) , (©)
2;1112% = * 2“1Ri2) 2“2’(2)
H,=—3u5 a2 A + V), ')

are just the operators which were used in our previous publication [4] for the variational solution of the vibration
rotation problem. But the algorithm proposed cannot be applied to the case with a large W-term and particularly
to the case with a significantly elliptical nonrigid trajectory. So we shall try to modify the method used earlier
adapting it to the special case of an elliptical potential. We suppose that the potential F(r, ) possesses minima at
every value of 9 and the set of these minimum points form the elliptical surface which may be described as follows

x2/b2 +y2[p2 + 22[a2 =1 .
Then we do the change of variables which transforms the elliptical surface into a spherical one (see, for example,
the problem from ref. [15])

 x=Qlrg)x', y=0lrg)y', z=(@lrp)7 . ®)
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We have the equation for the sphere of the radius 7y in new variables. We use now the same series expanéion for
the potential ¥ as in the spherical model '

e oan SN L o . ’
V=Wr, 0)= L4 Cpp,(r — rgy~coso . , A)
k,m .
It must be noted that for the most simple elliptical potential of the form V=%k(A — )\0)2, the transformed poten-
tial may be approximated as (see fig. 3)

V=k(r— )‘0)2 tky cos28(r — ’0)2 S

The second term is responsible for the interaction of radial and bending motions. It increases when the nonrigid
trajectory becomes more elliptical. This limits surely the applicability of the method proposed to cases of slightly
elliptical potential surfaces. But it is just the situation which takes place for LiCN type molecules.

We transform now the hamiltonian (5) to new variables

2 2c02 2
2 2 2 7 rd° —a 2

A=— = ) a0
T oax? ay? 022 82 T a2 a2
or equivalently -
r2 ré@® — 5%/ 32 2
Ap=da + b —o (a - a. ) an
at a?p?2  \ax'2  yy"2

One or another form of the operator may be more suited depending on the concrete model. Below we will never
use primes for new variables and the change of variables will be denoted by an arrow (—).

The change of variables introduced above does not affect the operators L,, J2,J,. To transform the operators
L, and L2 we define new operators E, :

E, =(Ex+iy)dfoz, 12
which are non-hermitian and obey the relation
(E:)+ =E;. ' (13)

Under the change of variables
E,>@Gl)E, ,

and

2 _p2
L, »%L;u (149)

b Lxo

Fig. 3. Change of the potential shape under the scale transfor-
z mation of variables (8).
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2_;2 a2, (;_44\,2
=123 L tL L)L +(1—;)Lz |

a’_p2
252

+

2 2\2
ac—b
(L+E_+E+L_+L_E++E_L+)+%( - ) (E,E_+E_E,). (15)

Taking into account relations (10), (14) and (15), the hamiltonian (5) may be written as

2 2 2\ a2 2 2
H=—L['—0'A_+(—Q——0) a_] +_; [Jz+ﬂ_L2+ (1 __.a_)Lg
2ualp2 T \g2 b2/ 2221 2u R} b2 b2

+a2 - b2 + ! a2 — p2\2 . 5 N
—2—b'2——(L+E_+L_E+ E_L++E+L_)+§' 2b (E+E_ E_E+)— L;
a a? —p?

—5(L+J_+L__J+)—T(E+J_+E_J+) + V(. 0). (16)

The hamiltonian (16) is obtained by using the body fixed coordinate frame connected only with the rigid core.
It is more suited to connect the moving frame with the “nonrigid vector” 7 when the van der Waals molecules are
considered. Another kind of the coordinate transformation is to be used in this case to take into account the ellip-
tical character of the nonrigid trajectory. This problem is treated in appendix A. The disadvantage of the operator
(16) is the coincidence of the center of mass of the rigid core and the center of the elliptical potential surface. For
treating the isotopic substitution problem it is desirable to have the possibility of moving the center of the elliptical
potential surface along the rigid core line. We consider the corresponding modifications in appendix B.

2.1. Bending-rotation and radial operators

We consider now the variational method of solving the eigenvalue problem for the operator (16). First of all we
introduce the operators Hy, and H, similar to operators (6) and (7). Surely operators (6) and (7) may be used as
auxiliary operators for the hamiltonian (16) but in such a case the elliptical character of the transformed kinetic
energy will be neglected. To reach a more accurate expression for the H, and H,. operatoss it is necessary to inves-
tigate the matrix elements (n1'm’ | A |nlm), where n is the quantum number for the oscillator over (r — rg); L m
are quantum numbers for the spherical harmonics, Y, ;4 is any operator contributing to the hamiltonian (16).
These matrix elements are discussed in appendix C. Comparing the hamiltonian (16) and expressions (C.6)—(C.11)
leads to the inclusion into H, of some additional terms arising from formula (C.6). In such a case H, has the form

3,2 2
128 2@’ -a®) g2
=___Od___..l_0—:Tcose+Vr(r). 17

This expression of the operator is not good for the simple variational method due to the parametrical dependence
on the angle 6. Nevertheless it may be used if the adiabatic approximation for the separation of radial and anguiar
variables is applicable. This approximation will be considered separately and here we limit ourselves to the simple
factorization method and use the auxiliary radial operator, H,, of the form (7).

To obtain the bending rotation operator H, we average the hamiltonian (16) with the vibrational function de-
scribing the motion over the variable (r — r). The resulting operator H, depends on the vibrational function used
but we neglect such a dependence in the zero order approximation. Thus using (C.6)~(C.11) we obtain the follow-
ing expression for the “rigid” bender-rotation operator:



418 ' B.L Zhilinskii et al./[Nonrigid molecules

. 2
H,= L‘ (sm26 L2 +L2sin%0 — 21;1)
o 2ﬂ2b2 L J

12

A

2
P [J2+~L2 +22 (s 20L2+L2sm29)+——3b—

+£a2_b22‘402+2';} 7sin28L2) — (L +1
i\~ (sin*0L% + L+ sin*8 — 2 sin BLZ)—E( oJ_TL_J)

a2

—p2 _ —
R ET_ET )] +V,(6)+ V,.(8) . (18)

Here V7 (0) is the additional potential cbtained from the averaging of the kinetic energy, E are the E operators
integrated over the radial variable. The kinematic potential has the form

a? — p2 a2 _ p2
==———(1 —3cos20) + [ (1 — 3 cos26)
44150252 1R2 b2
2 _ p2\2
+ (‘1 abb ) (sin*8 — 12sin6 cos26 + 3 sm2a)] ; (19)

In conclusion to this section we briefly discuss the general method of finding eigenvalues and eigenfunctions of
the operator (16).

(2) We diagonalize the operator H, (using harmonic oscillator functions, for example).

{(b) We diagonalize the operator Hy in the basis

2-12p] ¥, 6,9 D7 Y, 0.0]. DY, Y,00.9),

where Df (e, 8, 0) are generalized spherical furictions, depending on two Euler angles connecting the laboratory
fixed frame and the body fixed one.

(c) The operator (16) is dlagonahzed in the basis obtained by multiplication of the eigenfunctions of the opera-
tors i, and Hy.

'I'he method of solution is just the same as was used by us earlier [4]. The only disagreement is the most com-
plicated form of operators adapted to some special cases of the potential energy surface.

2.2. Strong ellipticity
We can generalize the spherical model to the case of a strongly elliptical potential surface. Let a nonrigid trajec-

tory be defined by

rg =r(@)=ro(1+A;cos 0+ 4, cos?0 +..)
and the potential has the form

v 0)= 2y Crm (r —rg)ecosme .

km

Here we use r, which depends on 6, in contrast to the potential (9) with constant r;. In such a case we are to use

some new auxiliary operators because the eigenfunctions of the operators (6) and (7) are not suitable for the basis
construction. Instead of (6) we take

Hy= L2+ —QL2+LJ_+L_J)]+% ( 12+p12
Haly 2uyry

7, R )+ o, (20)
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where
V,(0) = %} Com <050,

and we use the function By depending on the angle 8 instead of the rotational constant (215 r%)wl
By =Qu,rA)L.

We have to use the symmetrized product (B, L2+ LzBa)/ 2 instead of B, L2 due to the hermitian property of the
operator H,, ; the expression for H, may be generalized in a similar manner

L =—315  02or? + V(r —ry) ; @1)
where
V,(r—rp) =Z'k) Crolr—rg)* .

The eigenvalue of (21) does not depend on @ if we increase the integration range from (0, =°) to (—os, =), but the
eigenfunction is a funciion of @ even in this case. The total problem may be resolved by using basis functions which
are products of the eigenfunctions for operators (20) and (21).

2.3. Hamiltonian in elliptical coordinates

Sometimes the potential energy may be expressed in a rather simple form in the elliptical coordinates A, u:
O = Zi = No)um, (22)
M .

such that

and W(A, ) is a small term. In such a case it is desirable to use elliptical coordinates. The variables cannot be sepa-
rated in elliptical coordinates with the potential of the form (22), but the simple potential is attractive for using
such variables.

We transform now the total operator {5) into elliptical coordinates;

x=1Rcos® [(A2 — 1)(1 —p2)]12, p=3Rsino[(2—-1DA-p)]2, z={NR.

We use the change of variables which removes the weight factor. Thus

fff\ll*()" ] ¢)‘Il(>\: 23 ¢)d)\dy,d¢ =],

and the laplacian has the form

BRI 8 Pre . 33,03, 20,8 02-ph) @ 8 12
: 2[1{3(7\2—112)] [BKQ Dot T a0 - ha - ) a¢][R3(7tz—#2)] '

(23)

To transform the operators L, and L, we introduce in accordance with ref. [13] the following abbreviations

&=10% - D(1 —?)O2 —e2)] P2 @afan—Nofap) (W2 —p2) =12, b=l [02—1)(1 —pD)] V2. (29)
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Then - .
L,=—idfoe, L,=exp(ig)(xi+ibafos), L2=L2+3(L .L_ ,+‘L__L+) . : - {25)

So eqgs. (23)(25) give the total operator representation in elliptical variables.

We divide now the total hamiltonian to form the auxiliary operators H, and H,,. Such a separation is obvious
for the potential energy but not trivial for the kinetic energy. The standard method for obtaining the H,, operator
is to put A equal A; in the total hamiltonian and extract all terms Whlch do not contain derivatives w1th respect to A,

To do this we introduce .
& = [0 - DU - 203 - 22 (2, /) (0 —ﬁrm :
B0 =2gul(3 - Q1 —pH]712
=exp(zig)(xa® +16%3/3¢) ,

={[(\3 — DA -0 — pP)}udfon exp(ig) .

Then we can write H), as
Hy=— = [P +22+4500L0 +101% L2 +100_+100,)]
- Ry
. e ﬂ_iﬁ‘;ﬂ_zm@]
22 L R3A2 — ) o W LD ~4H

X [BIR3IAG — 1" + V(1) .

If we want now to construct H, it can easily be seen that the terms containing afax include a factor depending on

4. We cannot put u =y, because our model corresponds to an almost free motion over u at fixed A. Such a situa-
non arises due to the complicated form of the kinetic energy operator in elliptical coordinates. It is preferable to
use the #, operator which depends parametncally on p, i.e. to use the adiabatic type factorization (see, for exam-
ple ref. {17]). Thus .

2 _ 2 2 2_

H = 1 2[[:(}\ 2l)(l2 2;1 ) , @ 1} 1 4021 232 7,0,
2w RoL (A —p%) -

and we must solve 2 g-equation of the type

[H, + Ey(Ix( =Ex() .
where Ep (1) is the eigenvalue of the H, operator. The last method may easily be used only in the case when zero-
order functions (i.e. products of the eigenfunctions of #, and H,,) are a good approximation to the total problem.
To simplify the hamiltonian H, we can put all X in the kinetic energy expression equal to Ag.

2y RI2 —p?) on?

3. Conclusion

We have constructed and simplified hamiltonians for triatomic nonrigid molecules with a diatomic rigid core.
This extensive study was performed because we hope to treat the general problem of the vibration—rotation spec-
tra for nonrigid inorganic molecules in the gas phase. Unfortunately the experimental investigations of ionic inor-
ganic molecules in the gas phase are not numerous [18]. We hope that the purely theorctical models presented here
will facilitate the understanding of the general qualitative structure of the vibration—rotation spectra of ionic non-
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rigid molecules and will give possibilities for the interpretation of future data and for the theoretical prediction

-of thermodynamic properties of similar molecules at high temperatures. The triatomics are the most simple mole-
cules for manipulating with the total hamiltonian and searching the most simple models. The equations obtained
may be rather easily generalized to more complex molecules. We have not repeated here the numerical calculations
because some of them for the LiCN type molecule have already been published {4]. The following important step
is to take into account the possible symmetry of the rigid core. This is important for a large number of inorganic
nonrigid salts with symmetrical rigid core. (LiBH, is an appropriate example.)
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Appendix A

We develop here the hamiltonian in the body fixed coordinate frame, connected with the vector 7. Such a choice
of the moving frame is more suited in the case of van der Waals molecules because the vibration—rotation interac-
tion may be taken into account by perturbation theory in this case. The hamiltonian (3) has now the form

. 2
1 1§02 + 28 1

H= Ay

——= A2 2472 — 212+ + +
2 R myla2 ror r2[J L —QLyFLJ_+L_JIIH+VR,r0),

where J is the total angular momentum, Lz is the angular momentum associated with the vector R. Averaging this
operator over R we obtain the following analog of the hamiltonian (5)

2 .
1 a2 Lz 1 2, .12 2

—+ t = PPHLE — QL+ L J +L_J)+V(r,6). (Al
23 &2 2u,RE 2u,r? R z +) )

To elaborate the model adapted to the elliptical potential it is desirable to transform the operator in the same way
as in (8). But we cannot apply the same change of variables due to the use of spherical variables.
Let the nonrigid trajectory be described by the relation

r(@)=rq(1 +A; cos @ +A4,cos20+..),
where A4, 4, ... ate constants. Thén the transformation
F=r[l+4;cos0+A45cos260+. ]!, 6'=0;

(', 0’ are the new variables) results in a new nonrigid trajectory which is a circle. The transformation of the hamil-
tonian (A.1) to new variables is straightforward but does not yield such compact form for the hamiltonian as ex-
pression (16).

Appendix B

For the case of non-coincidence of the center of the elliptical potential surface and the center of mass of the
rigid core we use the generalized intemnal hamiltonian (see eq. (5) of ref. [4])
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€21y 1 1 L
A, =—(5—+ )A_+ P +L¥———(QL2+L,J_+L_J
K \8uy 2uy/ 7T 2u1R§( ) 2p1Rg(  *LJHLT)

~®/8yRG)[P,L_+P L +L P +L,P_—2@J_+P JI)|+V(r0), - (B.1)
where
Py =%iP, ~ P, =+3[0x +10/dy, & =(mp —my)/(my +my) — B, — BB, + B,):
B, By, are some parameters. The 7 vector is defined now by the relation
= Fc - (BaTa t ﬁbe)/(ﬁa + ﬁb) .

The case k =0 corresponds to the hamiltonian (4). To transform the hamiltonian (B.1) into new variables (8) we
make use of formulae (10), (14), (15) and the relation

Pi —’(rolb)Pi .
Denoting by H, the hamiltonian (16) we obtain the following generalized operator for the case Kk # 0

KZ[’OA +’5(bz—“2)a2] K [”’o

H=Hp— —| —A_ - —@PL_+P L +L P +L. P
E gl 52 47T 2z ar2] " BmRolpe Trh- TP TP LD
@ - b, 2ry
+ 3 (P E_+P E +E P +EP )— 5 @J_ +P_J+)] .

Appendix C

Some matrix elements of the type {n'!'m’| A |nim} are listed below. Here # is the quantum number for the oscil-
Iator over the variable (r — ry), { is the quantum number associated with the spherical harmonics Y7, , 4 is some
operator contributing to the hamiltonian (16).

First of all we transform the operators E, and 9/dz

e g 2 _sing @
E, = *rsin 8 exp(Zip) (cosﬂ - ag) . (C.1)
D _ el _sind 2
2z 0%, > «2
to remove the weight factor 2. It is needed to make the transformation
afor->(@far —1fr) .
Then we have sin 6 as the weight factor and the expressions (C.1) and (C.2) take the form
ey : a_1)_snga].
E, =*rsin  exp(tig) [cos 6 (ar - r)— - 60] ; - c3
9/0z = cos 8 8/ar — r—(cos 8 + sin 6 8/08) . : (o)

Now we can calculate the matrix elements:
n''m’182 (022 |nim) _ .
= (n'[42/dr2 |n)I'm' | cos20 Im) — (' [r—2 [7)(sin 8(3/36)!'m’ |sin 8(3/38)Im) (C.5)
+((@/ar — r~1)n'Ir-1nXcos 6 I'm'|sin 6(2/36) Im) + (r—1n'|(3/ar — r—L)nXsin 6(3/0)1'm’ |cos 6 k) .
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This expression is suitable for the calculation due to simple recurrence relations for cos 6 Y,,, and sin 68(3/06)
Y, [16]. For diagonal matrix elements we have

(nl'm’[02/822 \nind = (n]d2]dr2 |nX(I'm’|cos28 |Im) + (nlr—2|nX1'm’|

~3(sin20 L2 + L25in20) + L2 + 3(1 — 3cos28) lim) . (C6)
Some other matrix elements may be calculated as well:

l'm'|L E_+L_E +EL_+E_L_Inim)
={I'm'|(1 —3co0s20) — 2(sin2 0L2 + Lzsfnze) + 4[,22 lim) ..., .7

(l'm’|E_E_+E_E, |nlm)=I'm'[sin*6L2 + L2sin20L2 — 12sin26 cos20

+5in*8 + 3sin28 |Im) + 2(+(3/3An|¥(3/0)n){I'm’ |sin20 cos2@ | Im) . (C.8)
To evaluate matrix elements of the operator £, J_ +E_J, we define the operators E. N
E, =(nlE,[n). c9
Taking into consideration eq. (3.3) and the properties of harmonic oscillator functions we obtain
E, =7%sin 0 e*(Fcos 8 +sin §2/a6), (E) =E;, (C.10)
(nl'm'|E+J_+E_J+InIm)=(I'm'lE—+J_+E_J’+Ilm). ’ (C.11)
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