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The ambiguity of spectroscopic parameters in the case of accidental vibration—rotation resonances in tetrahedral mole-
cules is discussed. Equations are derived which relate different possible sets of roraJ and 72J2 and r2J° parameters obtained
by fitting to experimental data. Perturbation calculations are generalized to give formulae consistent with various sets of
fitted parameters for interacting v and v4 band of '2CH,.

1. Relations between fitted parameters of interacting E—F, states

In a series of papers by the Dijon and Reading groups [1—8] it was proved that a simultaneous fit of energy
levels of close-lying states of tetrahedral molecules enabled one te achieve much better accuracy compared to a fit
within an isolated-state model. However, the parameters of interacting states deduced from experimental data are
often rather different in different papers. These distinctions make it difficult to compare the results and to use the
fitted values in order to refine the molecular potential function. In this paper we consider the Coriolis interacting
E and F, states of tetrahedral molecules, using Champion’s formalism [3,4] for an effective hamiltonian

Heff =P9{effP, (1)

where P is the projector onto the manifold of vibration—rotation wavefunctions of interacting states considered and

eff _ (K.LrT’ +S3(K,L)rr’ '
ool = 2290 79¢ . @

In the expans:on '22) TEEALT = (DX Vie @ X RMELIYA1 are the irreducible vibration—rotation r2/% type
tensors and tn are adjustable parameters

The symbohc notation 7J € is used fora wbranon—rotatlon operator having total degree n in vibrational oper-
ators (coordinates g, impulses p, or creation as and annihilation a, operators) and total degree £ in the rotational

® Repofted at the VIIth International Conference on High-Resolution Infrared Spectroscopy, Liblice near Prague, September 1982.
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operators. Subindices denote vibrational modes. For exﬁmple, the r,r4J term corresponds to the well-known first-
order Coriolis coupling term (g,p4—P,q4 )/, between v, and vy.
Recently it has been shown [9] that there are the unitary transformations

ﬁeﬁ- = ‘.'eiéz eics; QtEEe(—idg)e(—iéz) . (3)

which keep the form (2) of effective hamiltonian and its eigenvalues unaltered but change the values of some param-

eter in a wide range. According to table 1 of ref. [9] in the case of Coriolis interacting v, and v4 fundamentals of
XY, molecules the first allowed S-generator in eq. (3) is of the form -

dl = s;fi.plmpz(}/g%(px) X R](I.Fx))Ax s (4)
where the notations of refs. [3,4] are used for vibrational ¥ and rotational R tensors. In eq. (4) the parameter
s3Q-FEF2 js free except for the order-of-magnitude condition

l(l,Fl)EFz <2,

®)
The transfoxmatxon (3), (4) induces changes in the r,r,J type Coriolis interaction parameter r3-FUEF2 and in all

diagonal er and 7 J type: parameters 12K, LTT _ After calculation of the commutator [ I,Qle ] we ﬁnd rela-
tions between the pa:ameters of the transformed and untransformed effective hamiltonians

~1Q,FEFy _ ,1(1,F)EF 1(1,F)EF

fa V2= V24 (6 — £ sy V2, ©)
=2(K,L)TT _ 2K, L)TT , (2(K,L)TT (1(1,FEF3 ,1(1,FEF
ts,s [ +C 52’4 1 2;2’4 VEF2 %)

where €, and € 4 are v, and v, vibrational energies, s =2 or 4, ' = E or F,, and the constants C2(K,L)IT are the
following

C20,A)EE —4/9, C22.EEE - —2/33,

®@)
CZ(O,AI)Fze = 8/27, C2(2’E)F2F2 = _4/9, C2(2,F2)F2F2 = 1/3.
Substituting eq. (6) in eq. (7) we obtain that allowed variations At =7 — ¢ of the parameters of an effective
hamiltonian are related by the equation
Atz(K L)TT _ ~2(K.L)rr (€, 64)’1 At%g'Fl)EFz tégny)EFz i ©)

It means that one can vary parameters in an effective hamiltonian (2) according to eq. (9) without changes in its
eigenvalues. Such variation leads to the change of an effective eigenbasis {¥Ir¢ff} only since it is equivalent to a
unitary transformation (3), (4). For closely lying vibrational levels,

(€3 —€)=N"w, m>1, (10a)
one has

APSGFUEFs < JOFDEF, (10v)

ArMEDFFs ~ 2K LE2F, (10c)

i.e. small variations in the r,r,J type interaction parameter lead to relatively large variation in diagonal r2J 2 type
- parameters. In view of this result, distinctions between fitted values of parameters deduced by Gray and Robictte
[2] and by Pierre et al. [S] may be explained as follows. In fact, Pierre et al. have determined from the experi-
mental data an effective hamiltonian which is different from that of Gray and Robiette ¥. Though these two ef-

* We do not mean differences in formalisms. There is a one-to-one correspondence between the notations of Robiette et al. and of
" - Champion (see, for example, table 4 of ref. [4]).
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fective hamiltonians have approximately the same eigenvalues, they have different eigenfunctions {¥°%} and

{wefy’,

2. Case of strong resonance

It is convenient to rewrite the relation (9) in another manner, considering one of AtggK,L)l‘l‘ as an independent
variation. Let us, for example, write Ar as a function of At%(%rE)F2F2

AQKDIT —_3CUKINTAZQEFaF2 AdAFOEF2 = _31(€, — € )i FUEF2 ] AZG P2 (11)

These relations are exactly equivalent to eq. (9), they are more convenient to consider a case of strong resonances,
when (€5 — € 4) = 0 (formally m - o in eq. (10a)). In this case we have Arifi’Fl)EFz — 0, thus one cannot change
the interaction parameter by a transformation (3). It means that this parameter must become very well defined in
the fit. However, all five diagonal r2J2 type parameters may be changed by the unitary transformation (3) from
negative to positive values including zero. Their changes are related by eq. (11).

3. Ambiguity in perturbation calculations

1t must be emphasized that the ambiguity considered is not a special feature of processing of experimental data.
The similar ambiguity takes place in perturbation calculations. Let us consider the perturbation theory in the form
of contact transformations (CT) [10—13]. A generalized version of CT applicable to accidental resonances is con-
sidezred in ref. [11]. The aim of CT is to transform the initial vibration--rotation hamiltonian H 3y, ., =Hy + M1,
+AH, + L.,

eff = 2S5, ,iAS —iASy -iAZSy eff , 4 2cypeff
K = e 2eMIH e le ZLLEH AR TNHS T (12)

in order to eliminate a coupling between different sets of interacting states. In the notations of ref. [11] this re-
quirement may be written as ¢ = (G ¢y’ where (...)" is a block diagonal part with blocks associated to inter-
acting states.

The generators S,, are defined by commautator equations which have ambiguous solutions. In the notations of
ref. [11] one has

iS;= UHHD+GZ )Y, iS,=0/ ‘123')(1'1’§)+<i22)'3 13)

where Z, = X isanarbitrary hermitean operator and the operation (1 JB)(...)isinverse [11—13] to the commutator
operation ..., Hy]. In order to derive an effective hamiltonian which is invariant under the time reversal operation
one has to consider only imaginary Z, operators *_The terms including lowest powers of r and J operators which
are totally symmetric with respect to T4 group have the from

zZ,= zl(Vil;z(Fl) X RILF1HAy zZ,= zz((— D Vgiz(l’z) X RMLF1yAr (14)
where z; SA2,z5 S A% are the free parameters. The usual way to avoid this ambiguity in CT is to require ™

(5, =0, ie. Z =0,z, =0. as)
We denote the S-generators which satisfy the condition (15) by €Ts

CTs, = () D) @H,) = Ts§mtif 4 CTgoor 4 CTganh (16)
* 1.e. Z,; must change sign upon time reversal.

# Similar (but not the same for n > 2) conditions are applied in all degenerate or quasi-degenerate formulations of perturbation
theory [13].
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Operations {...) and (1/£)(...) of CT in terms of irreducible tensors (¥ X R)YA1 [3,4] may be performed in a very
simple way [14] - ’

(Vg X ROEDI = ACV 3 g3 X RIEII, o an
Qo ¢ V{ns},{ms} X RQ(K,P))AI =(1- A)(—I)Kl(? e, — ;miwi) ¢ V{"s}' {ms} X RQ(K,F))AI s

where A = 1 if states Z;n;w; and Z;mw; are in resonance (or coincide); A = 0 if states Z;00; and Zym;w; are not
in resonance. For example, for XY, molecule we have -

CTsEnA = (110/2)(Blew )Y [(@] — a1 X RZCAD AL _3(Ble, )2 [(@] — a,)® X RFP) A

V3B 23 (Blw) 7y [(E] —a )2 X RPEFD A,
i“Tse"=_3iv3B ,3;’4 [,/ (w0021 {leo, — w0 (e, + 2]

X {[@; X a‘:)"l — (@, X ”,)F‘] X RULFDA
+ [(wy + W@y —w)] {I(@ X a)F1 — (g X ay)F1] x RILFD}A

—WBB 2 £,I@ X a)F1 x RIAFD]As
£=3,4

—iV312 B[S 3, (e300 (w5 — w (e + w D {I@h X a5)F1 — (a3 X a,)F1] X RIFDIA

+ [(w3 + @ (w3 — )] {[@5 X a)F1 — (@4 X a3) 1] X RILFI}ALY, (18)
In general, an effective hamiltonian is given by [13,11]

S8z, )= (Y} + [6Z Y, Hl, (192)
HETZ,,Z,) = {HYY + 3 [CTS L H I+ KiZ )Y, H Y'Y + [GZ,Y, [GZ)) Hl] + [GZ,),Hpl.  (19b)

Only the terms in braces were used in all the previous calculations by CT. We shall denote associate formulae for z-

parameters by C¥r assuming that the conditions (15) of CT were used to calculate it. For XY4 molecules we have
in the case of resonance between v, and vy -

CT2QAVEE = B2Jy, + 43K (Bl ) + B2(t3;/w,) (3w§ +wdl(w; —w?), (20)
GQAVFF2 = B2 2 ooy + 4B K 0 (Ble0)? +§B7 (T4 e0,) Beoy + 0RI(w] — 03)- @

The formulae for CTZZEEE Cl"tz(2 F)F2F2 CT;22,E)F2F2 are presented in ref. [15] on ¥. Other formations of
perturbation theory (such as pro_;ector formulatlons) prov1de the same second-order formulae.

However, the condition (15) is not necessary and is applied for a formal simplicity only. In the general case we
have due to the last terms in eqgs. (19) the following expression:

tz(K,L)I'I' CTIZ(K L)I‘I' +z Cz(K,L)I‘I‘(Crtl(l FI)EFz) tl(l ,JF1)EF2 _CTtl(l FI)EFz +2z (wz _ (.04) (22)

# There are some misprints in appendix II of ref. [15]. Formulae for £2(®ADTT o read asin egs. (20), 21).
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where s = 2,4 and the parameter z, < A2 is free. The ambiguity in eq. (13) is equivalent to unitary transformations
of effective hamiltonians [13,11]

wfz,.z,,.)= .22 LT (z =)} Z1e22 . (23)

With a suitable choice of arbitrary Z,, operators one can obtain in particular cases from (23) the results of any
other perturbation methods.

4. How te compare calculated and fitted parameters? Reduced hamiltonian

If one equates directly the parameters calculated by perturbation treatment and parameters deduced from a fit
of the experimental data it will not be quite correct due to the ambiguity considered above. The condition (15)
deals nothing with the requirement to minimize a standard deviation which is applied in computer programs used
in a fit. In fact, one has two different effective hamiltonians (21 g¢efl and (i) g¢efl Even if they have the same
eigenvalues they may have different r2J2 parameters since these hamiltonians may have different eigenfunctions

et}
¢ lx?:olumn 1 of table 2 we present the direct calculation (with z; = 0) of the r5r4J and 7272 parameters for v,—
v4 of CH4 which do not coincide with fitted values of Gray and Robiette. In collumns %,_’3 we try to _;q’ake optimal
choice of free parameter z, in eq. (22) requiring Ac3(FVEFz = fitp JALFOEF: o cale JLEEE - fit, JGEEE with
these choicesz, = (ﬁttigfl) - Crt%f},fl))/(wz —wy)orzy; =337 t%f%’ﬁ) - ﬁ‘t%f%.ﬁ))[ CTtéfi’Fl) , we have
much better agreement for the parameters. In fact, making this choice one performs a unitary transformation (23)
in order to match eigenbasis of (21 g¢eff 1o the eigenbasis of (DG el Formulae (22) of the generalized contact
transformations in particular cases with appropriate choice of free parameter z; may describe with reasonable ac-
curacy the fitted set of parameters found by Gray and Robiette or the set of Pierre et al.

Another possibility is to avoid the ambiguity by a restriction imposed on the form of H eff_ et us consider a
diagonal parameter 12{"-L)LL | According to egs. (7)—(10) its variation Ar2{m.L)LL is free. One can choose it in
such a way that ti’—;m ILL = 0. So one can fix tX"-LILL to zero or to other given value. After such restriction the
transformation (3) is forbidden. We call such a hamiltonian a reduced effective hamiltonian ®dg¢eff_1ts parameters

Table 1

Comparison of the Pierre—Pierre—Champion—Lutz [5] and Gray—Robiette [2] fitted parameters (cm™!) for v, and v4 interacting
bands of the methane molecule . i

UK, T) Fitted parameters of Parameters of unitary Fitted parameters of

Pierre—Pierre— transformed Gray and Robiette &)
Champion—Lutz PPCL-hamiltonian )
(PPCL) @
v2 20,A1) —0.6640 X 1072 —0.4433x 1072 —0.3846 x 1072
2(2.E) —3.1455 X 1072 —29544 % 10°° —2.8025x 1072
vz—vg4 interaction  1(1,F;) —9.6344 -952 ~9.52
va 2(0,Ay) —0.1813x 1072 —0.3284 x 1072 —0.3106 x 1072
2(2,E) —0.942x 1072 —0.7213x 1072 —0.6879 x 1072
2(2,F2) -2.758x 10°* —2.9295x 107 -3.126 X 1072
DRet. [5]. D sWLFOEF2 = 05155 % 103, O Ref. {2].
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Table 2. B p B 3
Compatison of rg.l2 and r,raJ parameters (cm"‘) calculated by generalized contact transformations and deduced from simultaneous
fit of experimental data on v, and v, interacting states of 1201, At/t = (fity — calcg/fity

 Fitted vahues of

Q(K,T) . Direct perturbation Calc;u]atic;ns by Calcuiaﬁor;s by
. calculations @ - generalized CT @ generalized CT®  Gray and Robiette b)
Zl":o zl=5.95X 10‘4 21:8.97x 10-4 - -7
va 2(0,A4) ~0.521x 1072 —0.303x 1072 ~0.137Xx 102 —0.3846 X 1072
N 2(2,E) —~3135x 10°2. —2946x 1072 - _2.8025 X102 —2.8025% 1072
va—v4 interaction 1(1,Fj) —9.6321 - —9.52 - =943 -9.52
va 7 2(0,A,) —0.064 % 1072 —0209x 102  —0320x% 102 —~0.3106 X 1072
2(2,E) -1.080% 107 —0862% 102 . -0696X1072  —0.6879x 10°
2(2,F2) ~2.893x 107 -3.057x 10?7 -3181x 107 -3.126 X 107
z(at/n? 1.11 - 0.22 0.42
2) Anharmonic force field of Gray and Robiette [16]. ®) Ref. [21.
are related to parameters of an unreduced one as follows
gt =0, @)
xed,;".’(qK,r')rr = ,3;1(,1‘ T _ (cUK.TITT /CZ(m,L'JLL),%’(Im,L')LL , (25)
" l) , - r
redt;g,l’l)EFz - t;g,Fl)EFz -i&,-€ 4)/c:(m.L )L} IIZ}""L ML /t‘_llg,FI)EFz. (26)

it is possible to compare directly calculated and fitted parameters (see table 3) if the same way of reduction in a

Table 3

r,z.l2 and ror4J parameters em™ of reduced effective hamiltonian for v, and v4 interacting states of 12CH4. The removed param-
eter is marked by asterisk. Ifarameters of reduced hamiltonian are recalculated with the use of egs. (24)—(26)

QUK,T) Using perturbation Using fitted values of Using fitted values of
calculations 2) Gray and Robiette D) Pierre et al. ©)
va 2(0,A4) 0.559% 1072 0.377x 1072 0.278x 1072
2{2,E) —2.200% 1072 ~2.207 x 1072 —2.329%x 1072
v3—v4 interaction 1(1,Fy) -9.078 —9.161 ~9.149
va 2(0,A;) —0.784% 1072 —0.769 x 1072 —0.809% 1072
*2(2,E) *0 *0 *0
2(2,F7) —3.703% 102 —3.642x% 1072 —3.465% 1072
s1U.FDEF; 252% 1073 1.63% 1072 2.20x 1073
4) Anharmonic forc field of Gray and Robiette [16]. D) Ref. [2].  ©) Ref. [5].
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fit of the experimental data and in perturbation calculations is used.
We have used the anharmonic methane force field of Gray and Robiette [16] deduced from the fits of isolated
states. Tables 2 and 3 make it clear that this force field is more consistent with fitted parameters of interacting v,

and v, states of ref. [2] than it may seem from direct perturbation claculations’g(::olumn 1 of tabel 2).
The second transformation in eq. (3) 3, ~ Z,, which induces changes in t%fg' 2)EF2 jnteraction parameter and

in t%(%’Az)EE and ¢ 2(,’;( TF2F2 diagonal parameters, has been discussed in ref. [9].

References

{1] H. Berger, J. Phys. (Paris) 37 (1976) 461.

[2] D.L.Gray and A.G. Robiette, Mol. Phys. 32 (1976) 1609.

[3] 3.P.Champion, Can. J. Phys. 55 (1977) 1802.

{41 J.-P.Champion and G. Pierre. J. Mol. Spectry. 79 (1980) 255. _

[51 C. Pierre, G. Pierre, J.-P. Champion and B.L. Lutz, J. Phys. (Paris) 41 (1980) L319.

[6] A.G. Robiette, J. Mol. Spectry. 86 (1981) 143.

{7] J.E. Lolck, A.G. Robiette, LR. Brown and R H. Hunt, J. Mol. Spectry. 92 (1982) 229,

[8] G. Poussigue, E. Pascand, J .-P, Champion and G. Pierre, J. Mol. Spectry. 93 (1982) 351.

[9] V1. Perevalov, V1.G. Tyuterev and B.1. Zhilinskii, Dokl. Akad. Nauk SSSR 263 (1982) 868.
{10] G. Amat, H_H. Nielsen and C. Tarrago, Rotation—vibration of polyatomic molecules (Dekker, New York, 1971).
[11] VLG. Tvuterev and V 1. Perevalov, Chem. Phys. Letters 74 (1980) 494.
[12] H. Primas, Rev. Mod. Phys. 35 (1963) 710.
[13] VLG. Tynterev, in: Intramolecular interactions and infrared spectra of atmospheric gases {Tomsk, 1975);

YuS. Makushkin and V1.G. Tyuterev, Izv. Vuz. SSSR Ser. Fiz. No. 7 (1977) 75.

[14] B.I. Zhilinskii, VI Perevalov and V1L.G. Tyuterev, Vestnik Moskovskogo Universiteta Ser. 2 Hemia 24 (1983) 43.
[15] V1. Perevalov, VLG. Tyuterev and B.I. Zhilinskii, J. Phys. (Paris) 43 (1982) 723.
[16] D.L. Gray and A.G. Robiette, Mol. Phys. 37 (1979) 1901.

461



