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The ambiguity of spectroscopic parameters in the case of accidental vibration-rotation resonances in tetrahedral mole- 
cules is discussed_ Equations are derived which relate different possible sets of r2rqJ and &* and rzJ* parameters obtained 
by fitting to experimental data. Perturbation calculations are generallzed to give formulae consistent with various sets of 
fitted parameters for interacting v2 and ~4 band of **CH4. 

1. Relations between fitted parameters of interacting E-F2 states 

In a series of papers by the Dijon and Reading groups [l-8] it was proved that a simultaneous fit of energy 
levels of close-lying states of tetrahedral molecules enabled one to achieve much better accuracy compared to a fit 
within an isolated-state model. However, the parameters of interacting states deduced from experimental data are 
often rather different in different papers. These distinctions make it difficult to compare the results and to use the 
fitted values in order to refine the molecular potential function_ In this paper we consider the Coriolis interacting 
E and F, states of tetrahedral molecules, using Champion’s formalism [3,4] for an effective hamiltonian 

Heff = PBleffp, (1) 

where P is the projector onto the manifold of vibration-rotation wavefunctions of interacting states considered and 

weff = ~p(K,LWr’ +Z(K.LWr’_ 
S,S’ S,S’ (2) 

tensors and tFsK I 
= In the expansion 2) T,,> K&W-’ 

jrr 

= ((-l)K vsr$‘tU x ~“(W)-41 

are adjustable parameters. 
are the irreducible viiration-rotation r’?Jn type 

The symbolic notation rnJSL _ @ used for a vibration-rotation operator having total degree n in vibrational oper- 
ators (coordinates qs, impulses pt or creation ai and annihilation CI~ operators) and total degree Q in the rotational 

* Reported at the VIIth International Conference on High-Resoh&on Infrared Spectroscopy, Lib&e near Prague, September 1982. 
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operators. Subindices denote vibrational modes. For example, the ~r4.J term corresponds to the well-known first- 
order Coriolis coupling term (4 

Recently it has been shown r 
4-p2(14)Ja between ~2 and ~4. 

91 that there are the unitary transformations 

@en= . ..e i&,it& seffe(- iJde(-i&) . . . , (3) 

which keep the form (2) of effective hamiltonian and its eigenvalues unaltered but change the values of some param- 
eter in a wide range. According to table 1 of ref. [9] in the case of Coriolis interacting ~2 and us fundamentals of 
XV4 molecules the first allowed S-generator in eq. (3) is of the form 

d1 = ,;(~F,)EFq~~tW x RNLF~+ , (4) , 9 
where the notations of reefs. [3,4] are used for vibrational V and rotational R tensors. In eq. (4) the parameter 
s$($Fl)EFs is free except for the order-of-magnitude condition 

, 
#WF2 2 ~2 _ (9 

The transformation (3), (4) induces changes in the r2r4J type Coriolis interaction parameter ~.$f$~r)~~s, and in all 
diagonal r$J2 and rsJ* type: parameters f$ * K*L)Pr. After calculation of the commutator [J, ,&:“I we find rela- 
tions between the parameters of the transformed and untransformed effective hamiltonians 

3k’3QP2 = t;t~W=F2 + (e, _ q#31)EF2, (6) , 9 * 

~JLLN-r = ;z(K,DL)I’r + c2(K.L)rrS~(~F1)EFZr:(~F1)EF2 
SP SS J (7) 

where &* and &4 are n2 and v, vibrationi energies, s’= 2 or 4, F = E or F,, and the constants C2(KsL)rr are the 
following 

C*(obl)= =4/g, c'(*,E)E=z_.2/~, 

c*@&Fz% = g/27 
(8) 

3 c’(*BPzFz = -4/g, c2(*9z)PzPz = l/3 

Substituting eq. (6) in eq. (7) we obtain that allowed variations At =F- t of the parameters of an effective 
hamiiltonian are related by the equation 

4pLN.P = c2UUIPP (c2 _ &4)-l~~‘F,)=F2,~(~Fl~F2 _ (9) , f 

It means that one can vary parameters in an effective ha&onian (2) according to eq. (9) without changes in its 
eigenvahres. Such variation leads to the change of an effective eigenbasis {\k”ff) only since it is equivalent to a 
unitary transformation (3), (4). For closely lying vibrational levels, 

(Q - d4)=Jhmw, ma 1, 

one has 

(loa) 

A$;Fr)EFz s Am r;(~Pr)EPs , (lob) 9 , 

~~2(K&bb_, t2KUJ5F2 
.v .v 3 (1W 

i.e. small variations in the ~2r4J type interaction parameter lead to relatively large variation in diagonal r2J2 type 
parameters. In view of this result, distinctions between fitted values of parameters deduced by Gray and Robiette 
[2] and by Pierre et al. [5] may be explained as follows. In fact, Pierre et al. have determined from the experi- 
mental data an effective hamiltonian which is different-from that of Gray and Robiette *. Though these two ef- 

. 

’ We do not mean differences ia formalisms_ There is a one-to-one correspondence between the notations of Robiette et at and of 
: Champion (see. for examtile, table 4 of ref. [4]). 
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fective harmltonians have approximately the same eigenvalues, they have different eigenfunctions {Pf3 and 
+Pe@j’* 

2. Case of strong resonance 

It is convenient to rewrite the relation (9) in another manner, considering one of A$iKqL)rr as au independent 
variation. tit us, for example, write At as a function of Ati($E)FaFa 

At2(K,0PF = _~~2(K~L)rrA,2(2,E)F2F2 
ss rs 

, A$~Fr& = -$ [(e 2 _ ~4)/$JW=z ] A$~E)FzFz _ (11) > 
These relations are exactly equivalent to eq. (9), they are more convenient to consider a case of skong resonances, 
when (E2 -e,) + 0 (formally m + - in eq. (loa)). In this case we have Az.#Fr)EF2 + 0, thus one cannot change 

the interaction parameter by a transformation (3). It means that this pammet& must become very well defined in 
the fit. However, all five diagonal r2J2 type parameters may be changed by the unitary transformation (3) from 
negative to positive values including zero. Their changes are related by eq. (11). 

3. Ambiguity in perturbation calculations 

It must be emphasized that the ambiguity considered is not a special feature of processing of experimental data. 
The similar ambiguity takes place in perturbation calculations. Let us consider the perturbation theory in the form 
of contact transformations (CT) [lo-131. A generalized version of CT applicable to accidental resonances is con- 
sidered in ref. [l l] _ The aim of CT is to transform the initial vibration-rotation hamiltonian Htib-.r = Ho f- Xi, 
+ X2Iz~ + .._, 

glen = ___eh2% eihSIH 
vib-rot 

e-ihS1 ,ih2,2s, -__ =H 0 +?&feff +h2Syeff + 1 3 ---, (12) 

in order to eliminate a coupling between different sets of interacting states. In the notations of ret [ 1 I] this re- 

quirement may be written as 5X eff = (Syeff)’ where (.J’ is a block diagonal part with blocks associated to inter- 
acting states. 

The generators Sn are defined by commutator equations which have ambiguous solutions_ In *he notations of 
ref. [11] onehas 

is, = (l/SC MY,) + (i-Z,>‘, iS, = (I/ sG’)@) + (iz,>‘, --. , (13) 
__- 

where 2 L = X is an arbitrary hermitean operator and the operation (l/%‘)(__.)is inverse [ 1 l-131 to the commutator 
operation [...,H,-,]_ In order to derive an effective hamihouiau which is invariant under the rime reversal operation 
one has to consider only imaginary Z, operators *_ The terms including lowest powers of r and J operators which 
are totally symmetric with respect to T, group have the from 

Z, =zl(fQ(Fr) x &(LFI))AI, z2 = =*(‘- 1) j52(F2) x R WFI))AI, 
-. (14) 

where z1 5 ?I’, 22 s A4 are the free parameters. The usual way to avoid this ambiguity in CT is to require* 

CiSJ’=O, i.e. Zn =O,zn =O. (15) 

We denote the S-generators which satisfy the condition (15) by mS 

mSI =(-i)(1/~3(H1)=~S~~f+~S~+CTS~. (16) 

* Le. Z, must change sign upon time reversal. 
f Similar (but not the same for n > 2) conditions are applied in all degenerate or quasi-degenerate formulations of perturbation 

theory [ 131. 

457 



Volume 104. number 5 CHEMICAL PHYSICS LETTERS 17 February 1984 _ 

Operatic& (J and (l/‘$‘)(...) of CT in terms of irreducible tensors (V X R)Al [3,4] may be performed in a very 
simple way [14] 

(c’ v+&cm3 
X R”(K*r))Al)’ = A(’ V{nsl,{msl X R”(K,r))tl, 

w m<‘V{nJ,{mJ 

where A = 1 if states ZinI++ and Eim#Gi are in resonance (or coincide); A = 0 if states Z1al-i and Zim,Gi are not 
in resonance. For example, for XY, molecule we have _ 

,crsFtif = (l/a)(B/~,)~/~ [(a; - aI+ X R2(0*A1)]Al -;(B/w,)~/’ [(a; - ~2)~ X R2(29E)]A1 

_ a ,=q4 (B/w,)3’2[, [(at - ~,)~2 X R2(2F2)] A1 , 
. 

lpsmr = 
1 -iiJSB ,=& [~J(c~J~~,)“~I C[(mz - ~J(~2 + ot)l 

, 

x {[(u; x a;)“1 - (a, x qFq x R l(l*Fl))Al 

+ [(a, + ot)&02 - w,)] {[(a; x atyl - (Q; X ~~1~~1 X R1(l*F1))A1 

-i&B ,=F4 3; [(a; X QF’ X R1(l*F1)]A1 
, 

--id73 B&&-y~,$‘~l WJ~ -w&w3 +~+)]{[(a; X a;sl -(cz3 X aJF1] XR1('*Fl)lAI 

-I- [(cd3 +6J4)/(03 -cd,)] {[(a; x Lp -(0+4X a3)qXRl(~31)}*l~. (18) 

In general, an effective hamiltonian is given by [13,1 l] 

Sqf(Z;> = {W1)3 + [e.zlY’HO1, (1% 

SK ;q.zl ,Z,) = {u+’ + $< [lPSl .q 13 + [<iz,>‘, W,Yl + [W,)‘, w+.q)l 1 + w.qw,1- (19b) 
O@ t.& terms in braces were used in all the previous calculations by CT. We shall denote associate formulae for t- 
parameters by ar assuming that the conditions (15) of CT were used to calculate it. For XY, molecules we have 
in the case of resonance between ~2 and ~4 

CT@k)EE =B2/U2 + ~&KI,(B/W,)~‘~ +B2@3/W2) (SW3 +Wg)/cwg - a:), (20) 

(;TfTiAr)F2F2 = B2 c%/w, + 4@ IC,,(B/U,)~'~ + :B2(&w4) (30; + w;)/(w; - a;)- (21) 

me folm&e for Cf@E)EE, a;;4$.F2)F2F2, ~@E)F82 are presented in ref. [15] on%. Other formations of 
perturbation theory (s&h as projectbr formulations) provide the -&me second-order formulae. 

However, the condition (15) is not necessary and is applied for a formal simplicity only. In the general case we 
have due to the last terms in eqs. (19) the following expression: 

- t2(K,Lm = crpwrr + 2 
SJ SJ 1 

C2(K~)rr(Crtl(l,Fl)EF2), 
2,4 

t;$,WEFt = ~#&)EF2 + zl(w2 _ 04), (22) 
, _ 9 

* There are some misprints in appendix II of ref. [ 151. Formulae for f a(op3rr must read as in eqs. (20), (21). 
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where s = 2,4 and the parameter z 1 2 A2 is free. The ambiguity in eq. (13) is equivalent to unitary transformations 
of effective hamiltonians [ 13,111 

gLeqzl ,z, )...) = ...,~2,gl psueqz~* = O)}e-Zl e-z2 . . . _ (23) 

With a suitable choice of arbitrary Zn operators one can obtain in particular cases from (23) the results of any 
other perturbation methods. 

4. How to compare calculated and fitted parameters? Reduced hamiltonian 

If one equates directly the parameters calculated by perturbation treatment and parameters deduced from a fit 
of the experimental data it will not be quite correct due to the ambiguity considered above. The condition (15) 
deals nothing with the requirement to minimize a standard deviation which is applied in computer programs used 
in a fit. In fact, one has two different effective hamiltonians tcalc)81eff and (fit)SYeff. Even if they have the same 
eigenvalues they may have different r2J2 parameters since these hamiltonians may have different eigenfunctions 

+@?l. 
In column 1 of table 2 we present the direct calculation (with z 1 = 0) of the r2r4J and r2J2 parameters for ~2- 

~4 of CH, which do not coincide with fitted values of Gray and Robiette. In coliumns 2,3 we try to make optimal 

choice of free parameter z i in eq. (22) requiring CHIC t2.4 
ltlF~)EFt = Ctti($F,EF2 or ca~ct:($E)EE = G'r$$OEE_With 

these choices zI = ( fittl(l,F1) - ~t~($Fl))/(~2 _ w4) or z1 = $/@@J) - firrS(i,~j)/CT.ff(:.F,):lwe have 2 4 
much better agreement ‘for the par&eters_ In fact, making this choice ond performs a’ unitary t&&formation (23) 
in order to match eigenbasis of (calc)9feff to the eigenbasis of @)SX eff. Formulae (22) of the generalized contact 
transformations in particular cases with appropriate choice of free parameter z 1 may describe with reasonable ac- 

curacy the fitted set of parameters found by Gray and Robiette or the set of Pierre et al. 
Another possibility is to avoid the ambiguity by a restriction imposed on the form of aeff. Let us consider a 

diagonal parameter tf mJ XL. 
such a way that 1 

A ccording to eqs. (7)-(10) its variation Ar2 mL%X is free. One can choose it in 
d 

‘U = 0. So one can fur t2 mJ’U to zero or to other given value. After such restriction the 
transformation (3 

I> 
is forbidden. We call such a hamiltonian a reduced effective hamiltonian red Bleff_ Its parameters 

Table 1 
Comparison of the Pierre-Pierre-Champion-Lutz [5] and Gray-Robiette [2] fitted parameters (cm-‘) for vz and v4 interacting 
bands of the methane molecule 

QWX) Fitted parameters of 
Pierre-Pierre- 
Champion-Lutz 
(PPCL) a) 

Parameters of unitary 
transformed 
PI’CL-hamiltonian b, 

Fitted parameters of 
Gray and Robiette c, 

y2 2tOA1) -0.6640 x lo-= -0.4433 x lo-= -0.3846 X lo-= 

W,E) -3.1455 x lo-z -2.9544 x lo-2 -2.8025 x lo-2 

~2-v~ interaction ltl.Fl) -9.6344 -952 -9.52 

v4 2(O.A1) -0.1813 x lO-2 -0.3284 x 10-2 -0.3106 x lo-= 

2(2&I -0.942 x lo-2 -0.7213 x lo-* -0.6879 x 1O-2 

W.F2) -2.758 x IO-* -2.9295 x lo-= -3.126 x lo-* 

a) Ref. [S]. b).S$i>Fr)EF2 = 0.5155 X 1(r3_ , c) Ref. 121. 
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Table 2 
Compaiison ofrzJ2 and rar,,J parameters (I&-‘) calculated by generalized contact transformations and deduced from simu&meous 
fit of experimental data on & and v4 interacting states of lZCH+ Ar/t = (fitr - cah%)jDtr 

SW,0 Direct perturbation Calculations by Calculations by Fitted values of 
calculations a) generalized CT a) generalized CT ‘) Gray and Robiette b) 
z,=o zr = 5.95 x 10-4 z, = 8.97 x lo* - _ 

.!9 2UM1) -0.521 x lo-2 -0.303 x lo-2 -0.137 x lo-2 -0.3846 X lo-’ 

2(2&I -3.135 x lo-2. -2.946 x 1O-2 - -2.8025 x 1O-2 -2.8025 x lo-’ 

- u2-~4 interaction l(l,Fr) -9.6321 -9.62 -9.43 -9.52 

v4 2(0,&) -0.064 x 1O-2 -0.209 x lo-2 -0.320 x lo-* -0.3106 x lO-2 

X2.E) -1.080 x lo-2 -0.862 x lO-2 _ -0.696 X lO-2 -0.6879 x lO-2 

XV21 -2.893 x lO-2 -3.057 x ii-* -3.181 x 16*- -3.126 x lo-* 

wdo2 1.11 0.22 0.42 

a> Anharmonic force field of Gray and Robiette [ 161. b’ Ref. [2]. 

are related to parameters of an unreduced one as follows 

, (24) 

It is possiile to compare directly calculated and fitted parameters (see table 3) if the same way of reduction in a 

Table 3 
r:J’ and r2r4Jparameters (cm-‘) of reduced effective hamiltonian for v2 and v4 interacting states of r2CH4. The removed param- 
eter is marked by asterisk. Paramemrs of reduced hamiltonian arc recalculated with the use of eqs. (24)-(26) 

S-WA”) Using perturbation 
calculations a) 

Using fitted vahres of Using titted values of 
Gray and Robiette b) Pierre et aL c) 

v2 X’U1) 0.559x 1o-2 0.377 x lo-2 0.278 x 1O-2 

2i2,E) -2.200 x lo-2 -2207 x lO-2 -2.329 x 10-2 

IQ--vi4 interaction WJ=l) -9.078 -9.161 -9.149 

v4 XO,Al~ -0.784x 10-2 -0.769 x lo-* -0.809 x 10-2 

*2(2,R) *0 *0 *0 

KW2) -3.703 x lirz -3.642 x lO-2 -3.465 X lO-2 

$2(+F~)EF2 2.52 X 10-T 1.63 X lO-3 2.20x 1o-3 

a) Anharmonic fort field of Gray and Robiette [ 16]_ b, Ref_ [2]_ c) ReE [S]. 
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fit of the experimental data and in perturbation calculations is used. 
We have used the anharmonic methane force field of Gray and Robiette [ 163 deduced from the fits of isolated 

states, Tables 2 and 3 make it clear that this force field is more consistent with fitted parameters of interacting v2 
and us states of ref. [2] than it may seem from direct perturbation claculations column 1 of tabe12). 

The second transformation in eq. (3) J, - Z,, which induces changes in 6 *(2* t2,4 2)EF2 interaction parameter and 

in 22 2 3(3pA2)EE and $i5r)F2F2 diagonal parameters, has been discussed in ref. [9] _ , 
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