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1 In tro duction

In order to seebetter the place of the present chapter within the very broad
subject of complexdynamical systemsweneedto start with a short discussionof
three key notions: Quantum systems,Complexity, Monodromy; and to explain
their interrelation and relevanceto the generalstudy of dynamical systems.

By quantum systemswe mean here very simple objects formed by a �nite
number of particles, typically atoms and molecules,which exist in bound states
and can be described within the standard non-relativistic quantum mechanics.
This meansthat the system can exist in a number of states, characterized by
discrete values of certain physical quantities, or equivalently by a set of quan-
tum numbers. The physical quantities are represented in quantum theory by
operators, whoseeigenvalues give the possiblevalues of these quantities. The
operators do not generallycommute. In order to characterizethe quantum state
we needto usethe eigenvaluesof a set of mutually commuting operators.

The �nite number of degreesof freedom and even the �nite numbers of
quantum states which we are typically interested in lead to an impression that
such dynamical systemshave more chance to be treated as \simple dynamical
systems" rather than complex. Thus an example which will be mentioned, the
hydrogen atom, is one of the simplest real quantum systemswith a completely
regular set of quantum states forming highly degenerategroups of levels, so
calledshells,which arepresent dueto speci�c dynamic symmetry of the problem.
Such shells themselvescan be consideredindependently as quantum dynamical
systemswith two degreesof freedomusing e�ectiv e Hamiltonians. At the same
time even a small external perturbation of a hydrogenatom by constant electric
and magnetic �eld leadsto a splitting of the degeneracyand to the appearance
of a complicated pattern of eigenstatesstrongly dependent on the values of
external parameterscharacterizing the perturbation.

More generally, the analyzedsystemof quantum statescan be consideredas
a simple one if all states can be arranged in regular patterns characterized by
several good quantum numberstaking consecutive integervalues. Such quantum
systemscorrespond to classicalHamiltonian integrable systemswhosedynamics
is regular and is associated with toric �brations. To go to the extremely simple
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caseone can assumethat classicalaction-angle variables are globally de�ned.
For quantum systems this means that the set of quantum states represented
through the joint spectrum of quantum operators can be globally arranged in a
regular lattice whosenodes are characterized by quantum numbers associated
with eigenstatesof mutually commuting quantum operators corresponding to
classicalintegrals of motion.

Another natural limiting behavior of dynamic systemsis associated with the
irregular spectra of quantum systems,or with the irregular or chaotic motion of
classicaldynamical systems[48]. Such irregular or chaotic dynamics is usually
quali�ed as much more complex than the regular motion. But generically the
majorit y of dynamical systems exhibit both regular and chaotic behavior at
di�eren t energiesand/or at di�eren t valuesof control parameters. The study of
the transition from the regular to the chaotic limit shouldbedonefor parametric
families of dynamic systems. Such a transition typically goes through several
consecutive steps from completely regular motion through a partial breaking
of integrals of motion [32]. At the sametime, even at the level of completely
regular motion for completely integrable systems,the complexity of a dynamical
system can be increasedthrough a sequenceof bifurcations (in both classical
and quantum cases[51, 67]). Increasing complexity of a completely integrable
classical(or quantum) dynamical systemscan be most easily seenby analyzing
the image of its energy-momentum map (or bifurcation diagram) [8, 5].

For a completely integrable classicalHamiltonian dynamical system the en-
ergy momentum map establishesthe correspondencebetweencommon levels of
energy and other integrals of motion and the values of these integrals which
are in involution for a completely integrable classicalsystem. We remind that
two physical quantit y are in involution in classicalmechanics, if their Poisson
bracket is zero. In quantum mechanics, the corresponding operators commute.
The energy momentum map has regular and critical points in the initial phase
spaceof the classicalHamiltonian problem, and regular and critical values in
the spaceof values of integrals of motion. Inverseimagesof regular valuesare
regular tori [2], while inverseimagesof critical valuesare various topologically
di�eren t objects. Consequently we can say that the energy momentum map
de�nes a �b er spacewith the basebeing the spaceof allowed valuesof integrals
of motion and the �b ers being the inverseimagesof the map. The set of critical
valuesof the energy-momentum map de�nes in somesensethe complexity of the
integrable dynamical system. In order to characterizethe complexity we needto
describe either the topology of singular (critical) �b ers and their organization,
or to intro duce some special characteristics of a family of regular �b ers sur-
rounding the above mentioned singularities. This is exactly the moment when
the Hamiltonian monodromy appearsasa natural characteristic to describe the
singularities of toric �brations and the complexity of dynamical systems.

For quantum analogs the system of common eigenstatesof mutually com-
muting quantum operators which form the complete set of observables plays
the role of toric �bration. Locally the joint spectrum of mutually commuting
operators forms a regular lattice in regionscorresponding to regular toric �bra-
tions of associated classicalsystems. At the sametime, singularities of classical
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toric �brations correspond to certain defects of the pattern representing the
joint spectrum of quantum operators. We can equally try to describe the defect
by analyzing the behavior of the locally regular lattice surrounding the defect.
This leadsus naturally to quantum monodromy which generalizesthe classical
Hamiltonian monodromy to quantum systems.

After this intuitiv e intro duction giving initial ideasabout relations between
the complexity and monodromy of classicaland quantum systemsand singulari-
ties (or defects)of almost regular patterns associated with classicaland quantum
systemswe turn to a slightly more detailed description of the Hamiltonian mon-
odromy along with more concreteexamplesof classicaland quantum dynamical
systemspossessingmonodromy. We will even try to generalizethe characteris-
tic discretepatterns with monodromy which arisenaturally for quantum atomic
and molecular systemsand to look for genericuniversal patterns and their de-
fects which appear in completely di�eren t scienti�c domains like botany, but
which neverthelesscan be consideredas a result of the evolution of a complex
dynamical system showing simple universal behavior.

The organization of the paper is as follows. Section 2 deals with basic in-
tro duction to classicalHamiltonian monodromy. Classicalquantum correspon-
denceis used in Section 3 in order to explain associated quantum monodromy.
Interpretation of quantum monodromy in terms of defectsof lattices of quan-
tum states and associated discussionof elementary and complex defects is the
subject of the central for this paper section 4. Possiblegeneralizationsof the
monodromy concept, naturally arising during the analysis of concretephysical
examples,are suggestedin section 5. Short section 6 reviews recent progressin
monodromy manifestations in time dependent processes.The last section7 dis-
cussesperspectives of possibleapplications of the monodromy concept to very
complex biological phenomenalike plant morphogenesis,using as an example
one particular but universal phenomenon:spiral phyllotaxis.

2 Hamiltonian mono drom y

The notion of \mono dromy" is generallyusedin science,mainly in mathematics,
in order to explain how somemathematical objects behave as they \go" around
a singularity. This is a very general and unprecise description which can be
made more concretewithin the �b er spaceconstruction [42, 8].

Let p : E ! B be a locally trivial �b er space with the base B . With
each point b 2 B we associate a �b er p� 1(b) and with each continuous path
 : [0; 1] ! B in B with initial point a =  (0) and end-point b =  (1) we
can associate a homeomorphismof the �b er p� 1(a) onto the �b er p� 1(b). In
a particular caseof a = b, the path  is a loop and we have a transformation
of F = p� 1(b) into itself. This transformation de�ned up to a homotopy is
called the monodromy transformation. The transformation of �b ers inducesthe
transformation on the homology and cohomology spacesof F , which are also
called a monodromy transformation.

In the context of classical Hamiltonian integrable dynamical systems the
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monodromy transformation appears naturally as a transformation of a regular
�b er associated with a closedpath in the basespacede�ned as a spaceof pos-
sible valuesof integrals of motion being mutually in involution [8, 17]. Image of
the energy momentum map (known also as bifurcation diagram [5]) enablesus
to clearly visualize for 2D-integrable Hamiltonian systemsthe qualitativ e struc-
ture of the associated �b er space. Regular �b ers in this caseare regular tori
[2] and the monodromy transformation can be described as a transformation of
a fundamental group (or a homology group) of a �b er associated with closed
paths in the basespace. In a more classicalmechanics way we can speak about
local action-anglevariablesde�ned on individual tori and their connection(evo-
lution) along a family of tori associated with a loop in a basespace. The fact
that a loop goes around a singularity and is consequently noncontractible im-
plies the absenceof global action-anglevariablesand the presenceof non-trivial
monodromy transformation [43, 17].

The simplest situation in the caseof completely integrable dynamical sys-
tems with 2 degreesof freedom corresponds to the presenceof an isolated sin-
gular �b er (seeFigure 1 a) which can be surroundedby a loop in the basespace
going only through regular �b ers [40, 5, 19, 61, 63]. Such a situation is present,
for example, in a number of very simple model mechanical problems like parti-
cle motion in an axially symmetric potential of \mexican hat" or \c hampagne
bottle" type : V (r ) = ar 4 � br2, with a; b > 0 [3, 6], or for spherical pendu-
lum [8, 9, 19]. We can associate with each isolated singular �b er a closedpath
going around a corresponding isolated critical value in the base space. In its
turn this closedpath is associated with the transformation of the �rst homol-
ogy group of a regular �b er. This transformation can be naturally represented
by a matrix with integer coe�cien ts leading to integer monodromy. A typical
isolated singular �b er which appearsgenerically for Hamiltonian systemswith
two degreesof freedomis a pinched torus represented in Figure 2 a. A pinched
torus is obtained from a regular torus by shrinking one non-trivial circle to a
point. Its geometricalview asan object in the three-dimensionalambient space
can give an impression that depending on the choice of vanishing cycle the ge-
ometry of the pinched torus can be di�eren t. But this is just an artifact which
is causedby plotting the pinched torus in 3-D rather than in 4-D. In fact, the
choice of coordinates on the torus is ambiguous and this ambiguit y is due to
the SL(2; Z ) symmetry of a two-dimensional lattice. This leads, in particular,
to the important fact that the matrix representation of monodromy is de�ned
up to a SL(n; Z ) similarit y transformation for n-dimensional problem.

It is possible that instead of one isolated singular �b er the image of the
energy-momentum map is a whole region with a complicated set of singular
�b erssurroundedneverthelessby a regular region. Figure 1 c shows an example
of an \island" which can be surrounded by a closed loop in the base space
going through only regular �b ers. The resulting monodromy transformation
characterizes the whole region possessingsingular �b ers and in such a case
we can speak about nonlocal integer monodromy [53, 36]. One of the simplest
reasonsof the appearanceof a nonlocal \island" like singularity is the formation
of a secondcomponent in the image of the energy-momentum map due to the
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Figure 1: Typical images of the energy momentum map for completely inte-
grable Hamiltonian systems with two degreesof freedom in the caseof: a -
integer monodromy, b - fractional monodromy, c - nonlocal monodromy, and d -
bidromy. Values in the light shadedarea lift to single 2-tori; values in the dark
shadedarea lift to two 2-tori. Dashed lines in sub-�gures c, and d correspond
to stratum formed by bitori.

transformation of an isolated focus-focus singularity into an \island" through
the Hamiltonian Hopf bifurcation [19] which is related to the presenceof a family
of singular �b ers. Each generic member of such a family is named a bitorus.
It is represented in Figure 2 c. A singular (cuspidal) torus (seeFigure 2 d) is
its limiting form corresponding to cornerson the bifurcation diagram 1 c where
the bitorus line ends.

A less trivial situation ariseswhen the essentially singular �b er is not iso-
lated but appears as a limiting caseof a one-dimensionalstratum of weakly
singular �b ers [45, 46, 19]. The presenceof weakly singular �b ers doesnot al-
low one to go around the essential singularity by transporting the basis cycles
of the homology group of regular �b ers. At the sametime it is now possibleto
study the continuous evolution of cyclesfor certain subgroupsof the homology
group. Such construction allows us to generalizethe monodromy notion and
intro duce \fractional monodromy" [45, 46, 21, 29, 44, 60]. An image of the
energy-momentum map with a singularity leading to fractional monodromy is
shown in Figure 1 b. An exampleof weakly singular �b ers, the so called curled
torus, is shown in Figure 2 b.

Qualitativ e characterization of imagesof energy-momentum maps for clas-
sical integrable systems and especially of their generic possible evolution for
families of integrable systemsdepending on oneor several control parametersis
important from the point of view of di�eren t generalizations. In spite of a very
seriousrestriction due to integrabilit y, the qualitativ e features, like monodromy,
remain valid even for non-integrable systemswhich can be obtained by small
non-integrable perturbations [4]. The situation here is similar to the KAM the-
orem [2] assuring that the majorit y of tori survive under a small perturbation
leading from regular to chaotic classicalmotion.
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Figure 2: Two dimensionalsingular �b ers in the caseof integrable Hamiltonian
systemswith two degreesof freedom: a - pinched torus, b - curled torus, c -
bitorus, and d - singular (cuspidal) torus.

3 Classical quan tum corresp ondence

Another important aspect of classical integrable systemswith monodromy is
the generalization from classicalto quantum mechanics [9, 61, 62, 52, 28]. The
quantum analogof a classicalintegrable dynamical systemis a quantum system
possessinga mutually commuting set of operators corresponding to physical ob-
servables. Classical local action variables correspond in quantum mechanics to
quantum numbers which label common eigenfunctionsof mutually commuting
operators. Representation of joint spectra of mutually commuting quantum op-
erators naturally leadsto locally regular lattices due to the simple quantization
conditions imposedon local classicalaction variables.

Formal correspondence between classical integrable Hamiltonian systems
and their quantum analogs helps to visualize the quantum monodromy [52].
Existence of local actions for an integrable system meansthat the joint eigen-
values of mutually commuting quantum operators corresponding to classical
integrals of motion for a n-degreeof freedom,completely integrable, dynamical
systemform a pattern which locally can be mapped onto a standard Z n lattice
[66, 65]. If the quantum commuting operators correspond directly to classical
actions the lattice formed by the joint spectrum of these operators represents
a regular rectangular pattern becauseof the simple quantization rules for both
action variables. A more typical situation corresponds to caseswhen only part
of the classicalintegrals of motion are actions, while others, like energy, are not
actions themselves, but can be locally transformed into actions by nonlinear
(and in somesensesmall) transformations.

Figure 3 gives an example of classical - quantum correspondencefor com-
pletely integrable problems with two degreesof freedom. The image of the
classicalenergy momentum map is shown in the spaceof valuesof integrals of
motion: f energy, �rst actiong. Figure 3 a shows the regular part of the image
of classicalenergy-momentum map together with points corresponding to joint
eigenvaluesof quantum mutually commuting operators. In order to seethe nat-
ural correspondenceof a discrete lattice with regular Z 2 lattice, an elementary
cell of the lattice is chosenand displacedthrough the lattice along a closedpath.
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Figure 3: Quantum joint spectra for typical regionsof the image of the energy
- momentum map for someexamplesof integrable problems [15].

It is evident that the initial and �nal cells coincide and all closedpaths in this
local regular region of the lattice are similar from this point of view. In more
formal terms we can say that all closedpaths in the regular simply connected
region of the image of the energy-momentum map are homotopic to a point,
i.e. such closedpaths could be shrinked to a point becauseall intermediate cells
remain equivalent.

Figure 3 b illustrates another possibility. The region of the classicalenergy-
moment map shown here has an isolated singularity, associated with a pinched
torus. In any simply connectedlocal region which doesnot include the singular-
it y, the behavior of the quantum cell after going around a closedpath is similar
to that shown in Figure 3 a. In contrast, if the closed path goes around the
singularity the �nal form of the elementary cell clearly di�ers from the initial
form, thus indicating the presenceof nontrivial monodromy [52]. The trans-
formation between initial and �nal cells does not depend on the geometry of
the closedpath supposing that it goes only once around the singularity. The
transformation between initial and �nal cells written in the matrix form gives
the matrix representation of quantum monodromy. Naturally , the explicit form
of the matrix depends on the choice of the lattice basis which is de�ned up to
an SL(2; Z ) similarit y transformation.

Figure 3 c shows the image of the classicalenergy - momentum map with
a region where two connected components exist in the inverse image. This
curvilinear triangular region is represented in the �gure by dark hashing. The
correspondencebetweenclassicaland quantum mechanics is more complicated
for this example. Outside the region with two classicalconnectedcomponents
there is one lattice of quantum joint eigenvalues. Inside the \dark" region with
two classicalconnectedcomponents of the inverseimageall quantum statescan
be approximately separated into two distinct leaves (neglecting the tunneling
splitting which allows the coupling of quantum states associated to two dis-
connected classical components). Taking an elementary cell on the big leave
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Figure 4: 1 : (� 1) resonant oscillator system with a cut along a eigenray R =
f m = 0; E > 0g. Left: Representation in energy- angular momentum variables.
Right: Representation in action variables.

and going around the \island" we de�ne a quantum nonlocal monodromy which
characterizesthe secondleaf of the lattice and the way how two leaves join to-
gether. The vibrational structure of an LiCN moleculecan be suggestedas an
exampleof a concretemolecular systemwhich is reasonablywell described by an
integrable approximation which shows the presenceof an island and a nonlocal
non-trivial monodromy [36]. The secondcomponent exists as well for the quite
similar example of an HCN molecule [22] but the closedpath surrounding the
secondcomponent cannot be constructed for the HCN model and consequently
the HCN example is completely di�eren t from the LiCN one.

4 Lattices and defects

The above mentioned examplesgive an impressionthat patterns formed by the
joint spectrum of mutually commuting quantum operators can be consideredei-
ther as ideal periodic lattices (ideal crystals) or as periodic lattices with defects
[66]. More generally one can suppose that lattice defects of periodic crystals
[41, 37] should correspond in someway to singular �b ers of classicalintegrable
dynamical systems. In fact, this analogy proves itself to be extremely useful,
although even the simplest classicalsingularity associated with a pinched torus
(so-called focus-focus point) leads to a defect of the lattice of quantum eigen-
states which has no straightforward analog among typical crystal defects.

4.1 Elemen tary mono drom y defects

In order to seethe correspondencewith solid state defectsweanalyzethe pattern
of quantum eigenstatesfor a two degreeof freedom integrable system possess-
ing, in the classical limit, a focus-focus singularity. A typical classical image
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of the energy momentum map together with common eigenstatesof mutually
commuting operators for corresponding quantum problem are shown in Figure
4. To demonstrate the presenceof the defect, we do the cut starting at the
singularity of the classicalproblem. There are a lot of di�eren t possibilities to
realizesuch cut. We �rst do the cut along the m = 0; E > 0 ray. Such choiceof
the direction of a cut is namedan eigenray by M. Symington [63]. Its speci�cit y
can be easilyexplainedby using the Figure 4, wherewe have labeledeigenstates
for each m by consecutive integers starting from zero. These integers play the
role of quantum numbersassociated with a secondaction which is de�ned locally
in any simply connectedregion of regular valuesof the energy-momentum map.
We seethat this local action (quantum number) has the same value for each
eigenstate located at the cut irrespective of either we approach the cut from
the right or from the left. At the sametime the �rst derivative @E

@m (calculated
for a set of states with the samequantum number corresponding to a second
action) has a jump at the cut. Due to the presenceof such a discontinuit y of
the �rst derivative this cut wasnamed \kink" line by M. Child [6]. It should be
noted that the presenceof a \kink" singularity is a purely arti�cial fact related
to the multiv aluednessof the action variables and to our choice of one leaf of
the multi-v alued function.

In fact, we can continue labeling eigenstatesof the joint spectrum by con-
tinuing local action variables within E > 0 energyregion from the m > 0 to the
m < 0 domain. This will naturally give another labeling schemewhich can be
shown on the bifurcation diagram and which is associated with an alternativ e
construction of a single valued function from an initially multiv alued one. If
we transform the (E ; m) plot to new coordinates which we chooseas two local
actions, [as it is shown in Figure 4, right] in order to continue the line corre-
sponding to one chosenvalue of local action acrossthe (m = 0; E > 0) ray we
needto changethe direction after crossingthe ray.

If we do cut along any other direction, the local action itself has a disconti-
nuit y at the cut. This situation is shown in Figure 5. Further transformation of
the lattice with a cut to local action coordinates leads to a regular lattice with
a certain part of this lattice removed and with the boundaries of this removed
wedgebeing identi�ed [65, 66, 46]. Figure 6 illustrates the construction of the
defectassociated with the simplest focus-focussingularity (single pinched torus)
in the regular lattice by making a cut in the direction orthogonal to the \eigen-
ray". Such construction is similar in spirit to the representation of dislocations
and disclinations in solid state physics by a cutting and gluing procedure. At
the same time the obtained defect di�ers from well known constructions for
dislocations and disclinations. We named the defect shown in Figure 6 an \el-
ementary monodromy defect". The most important features of the suggested
construction of an \elementary monodromy defect" is the linear dependenceof
the number of removed stateson the value of the integral of motion. This prop-
erty is related to the Duistermaat-Heckman theorem applied to the volume of
the reducedphasespacein classicalmechanics [18, 62, 31].
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Figure 5: Cut leading to a discontinuit y of the secondlocal action.

Figure 6: Construction of the 1:(� 1) lattice defect starting from the regular Z 2

lattice. Dark grey quadranglesshow the evolution of an elementary lattice cell
along a closedpath around the defect point.
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4.2 Fractional mono drom y defects

The geometrical construction proposedfor the description of a monodromy de-
fect allows immediately several alternativ e ways of generalization. The �rst
possibility is the construction of lesstrivial elementary defects,like recently in-
tro duced fractional monodromy defects [45, 46]. We illustrate construction of
such a defect in Figure 7. The idea of relevanceof such a speci�c defect to pat-
terns formed by joint eigenvaluesof mutually commuting operators camefrom
the typical dependenciesof the number of states in multiplets or polyadson the
quantum number characterizing these polyads or multiplets. This question is
again related to the Duistermaat-Heckman approach describingthe evolution of
the reducedphasespaceswith the corresponding integral of motion value.

The important di�erence between the removed wedgeassociated with ele-
mentary \in teger" monodromy (represented in Figure 6) and the removedwedge
in the caseof a fractional monodromy defect (seeFigure 7) is in the number of
the removed states consideredas a function of the integral of motion. In the
integer casethis function is linear [or polynomial in the higher dimensionalcase]
[31], while in the fractional casethe function is a \quasi-polynomial" [59], i.e. it
includesan oscillatory part. In a particular exampleshown in Figure 7 we have
just modulo 2 oscillations. In an equivalent way it is possibleto say that weneed
to considerseparatelythe sub-lattices with evenand odd m values,each possess-
ing an integer \elementary monodromy defect". The geometrical consequence
is the impossibility for an elementary cell to go unambiguously through the cut.
Depending on the position after crossingthe cut, the elementary cell takesone
of two di�eren t geometrical forms shown in Figure 7, left. In contrast, if we use
a double cell, the result of the cell transformation after making a closed trip
around the essential singularity and crossingthe cut only once is independent
of the place where the cell crossesthe cut. The price for that are the fractional
coe�cien ts which appear in the monodromy matrix written for the elementary
cell. We can formally use the monodromy matrix for an elementary cell in the
regular region even if this elementary cell itself cannot crossthe singular cut.

An exampleof a simple model problem showing the presenceof a fractional
monodromy and the associated pattern of common eigenstatesof two mutually
commuting operators is shown in Figure 8 [33].

The corresponding dynamical system is constructed by taking two angular
momentum operators N = (Nx ; Ny ; Nz ), S = (Sx ; Sy ; Sz ) interacting in a non-
trivial nonlinear way betweenthemselvesand with an external �eld. The model
Hamiltonian is given as:

H � =
1 � �
jSj

Sz + �
�

1
jSjjN j

SzNz +
1

2jSjjN j2
�
N 2

� S+ + N 2
+ S�

�
�

; (1)

where standard notation is used for ladder operators N � = Nx � iN y , S� =

Sx + iSy , and jN j =
q

N 2
x + N 2

y + N 2
z , jSj =

q
S2

x + S2
y + S2

z . This model

generalizesthe most trivial model of angular momenta coupling leading to the
appearanceof a focus-focus singularity in classical mechanics and an integer
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Figure 7: Construction of 1 : 2 rational lattice defect. Left: Elementary cell
doesnot passunambiguously. Right: Double cell passesunambiguously.
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Figure 8: Fractional monodromy for two angular momenta coupling model.
Image of the energy-momentum map is given for Hamiltonian (1) with � = 0:5.

quantum monodromy in the corresponding quantum problem [47, 52, 26, 27]. It
is interesting to note that the simplest quantum problem, namely the hydrogen
atom in the presenceof external electric and magnetic �elds leadsto integrable
approximations for certain valuesof �eld parameters,which show the presence
of fractional monodromy [25, 23, 24].

4.3 Mono drom y - defect corresp ondence

Another way of generalizingthe possiblepatterns typical for lattices formed by
joint spectrum of mutually commuting operators is to describe more compli-
cated defectswhich can be present for 2D-lattices from one side and for higher
dimensional lattices from another side. We restrict ourselveshere with 2D-case
only.

First of all it should be reminded that if we want to characterize the de-
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fect of a quantum lattice (or the singularity of a classicaltoric �bration) by its
monodromy, we intro duce in somesensea certain equivalencerelation between
di�eren t defects(singularities). The most detailed description of a singularity of
classicaltoric �bration and of the associated quantum state lattice can be done
by indicating the explicit transformation of the basisof the �rst homologygroup
of regular �b ers. In such a casetwo defectscharacterizedby the presenceof one
vanishing cycle becomedi�eren t if the vanishing cyclesthemselvesare di�eren t.
Naturally , the monodromy matrices associated to thesetwo defectsand written
in the samebasis of cycles (or on the samelattice basis) are di�eren t. At the
sametime thesematrices belongto the sameclassof conjugatedmatrices within
the SL(2; Z ) transformation group responsible for the basis transformation of
the 2D-lattice. Thus, the monodromy matrices should be consideredequivalent
if they belong to the sameclassof conjugated elements of the SL(2; Z ) group.
To characterize the class of conjugated elements we use �rst the trace of the
matrix. The matrices M 2 SL(2; Z ) are named parabolic, elliptic or hyper-
bolic, if their traces equal � 2 (for parabolic), � 1; 0 (for elliptic), or > j2j (for
hyperbolic). A more detailed classi�cation of parabolic matrices into classesof
conjugated elements needsadditional information, like a non-diagonal element
of somestandard \normal form" of the parabolic matrices. Especially interest-
ing is the importance of the sign of the non-diagonal element indicating that,
for example, two quite simple monodromy matrices

�
1 0
1 1

�
;

�
1 0

� 1 1

�

belong to di�eren t classesof conjugated elements within the SL(2; Z ) group.
We name these matrices positive and negative elementary monodromy matri-
ces. It is important to note that only one classcorresponds to an elementary
toric singularity, the pinched torus. Its representation as a defect of a regular
lattice corresponds to removing a wedgefrom the lattice and to identifying the
wedgeboundaries. It is also important to note that using several elementary
monodromy matrices which belong to the sameclassof conjugated elements of
SL(2; Z ) but can be reduced to the normal form in a di�eren t lattice basis it
is possibleto construct an arbitrary SL(2; Z ) matrix representing a cumulativ e
monodromy e�ect [12, 11].

At the sametime the monodromy (i.e. the classof conjugated elements of
SL(2; Z ) group) doesnot de�ne in a unique way the classicalsingularity and the
pattern formed by the joint spectrum of commuting quantum operators [11, 12].
For example, 12 specially constructed elementary singularities (each described
by a matrix conjugated to the simplest monodromy matrix and represented by
defectsassociated with removing a wedgefrom the lattice) can lead to global
trivial monodromy. This is a simple consequenceof the SL(2; Z ) group struc-
ture [55, 49]. Non-trivialit y of a global singularity neverthelessis clearly seen
through the transformation of the elementary cell going around all singularities
on the lattice of mutual quantum eigenstates.The cell realizesthe 2� rotation
around itself while going along a closedpath surrounding these 12 elementary
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Figure 9: Construction of two-dimensionalsurfacesby the identi�cation of the
opposite ends of a square,preserving the directions indicated by arrows. (a) -
Identi�cation of AB with DC and AD with B C givestorus. (b) - Identi�cation
of AB with CD and AD with B C givesKlein bottle. (c) - Identi�cation of AB
with CD and B C with DA givesreal projective plane, RP2.

singularities. It is important that the sign of the rotation of the elementary cell
is well de�ned and corresponds to removing wedgesfrom the lattice [65].

As another example, it is possibleto realize the negative \elementary mon-
odromy" by using 11 elementary positive monodromy defects. In such a case
the rotation of an elementary cell while going around this defect can be again
characterizedasa \p ositive" and being almost overall 2� rotation in spite of the
fact that a much more simpler construction of the elementary \negativ e defect"
can be formally doneby inserting into the lattice a wedge,corresponding to one
elementary monodromy defect, instead of removing from the lattice 11 wedges
corresponding to elementary defectsas in the caseof \p ositive defects".

The notion \elementary monodromy" which we use is due from one side
to the simplicit y of the matrix representation but from another side due to
simplicit y of the topology of the singular classical �b er responsible for such
monodromy. The geometricmonodromy theorem states that the presenceof an
isolated singly pinched torus leadsto the elementary positive monodromy of an
associated toric �bration [8, 40]. A singly pinched torus can be alternativ ely
described as a sphere with one transversal positive self-intersection point. In
order to understand this statement better it should be reminded that in four-
dimensional spacethe 2-dimensional surfacesgenerically intersect via isolated
points and the simplest model of a pinched point of a torus corresponds to
the intersection of two 2-D planes (x = 0; y = 0) and (z = 0; w = 0) in 4-D
f x; y; z; wg-space. Positivit y of the self-intersection point means that a 4D-
frame constructed from two 2D-framestransported from a regular point on the
surface to the singular point of self-intersection via two non-equivalent paths
givespositive volume.

The representation of a negative\elementary monodromy" in terms of 11ele-
mentary positive singularities shows in somesensethe complicated nature of the
\elementary negative defect". At the sametime simple topological arguments
suggest,instead of a singly pinched torus as a possiblecandidate for an alter-
native simple defect, the singular �b er which is a spherewith one transversal
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Figure 10: Representation of a Klein bottle in a 3D-spaceas a surface with
self-intersection.

negative self-intersection point [39]. The objection to appearancein Hamilto-
nian systemsof such a topologically allowed defect comesfrom the deformation
arguments. Supposingthat the \negativ e" defect is an elementary one,the small
deformation of this singular �b er removing the singular point should lead to a
�b er from the neighborhood �lled by regular �b ers. At the sametime, a small
deformation of a singular �b er which is a spherewith one transversal negative
self-intersection point should lead to a regular �b er which is a non-orientable
surface(Klein bottle) instead of a regular torus.

In order to see why this non-orientable surface cannot be another non-
orientable surface,for examplereal projective plane RP2, rather than the Klein
bottle we can study what happenswith a pinched RP2 if we cut it through the
pinch point. One can verify that a singly pinched RP2, after cutting through
the pinch point, becomesagain RP 2 rather then sphere.

In contrast, if we prepare a singly pinched Klein bottle and cut it through
the pinch point, the result may be di�eren t. It is important to note that the
Klein bottle can be pinched in two non-equivalent ways: either by shrinking
to zero the cycle which is a generator of the in�nite group, or by shrinking to
zero a generator of a Z2 group. Cutting a pinched Klein bottle through the
pinch point which corresponds to a vanishing cycle being a Z2 generator leads
to a 2D-sphere, S2. At the same time cutting pinched Klein bottle through
the pinch point which corresponds to a vanishing cycle being a Z generator of
a group of integers results in an RP2 surface. Thus appearanceof a sphere
with onenegative self-intersection point asa genericsingular �b er assumesthat
regular �b ersshouldbe Klein bottles rather than regular tori and the singularity
should be associated with the vanishing of the Z2 generator. It is probably
useful to note here that the Klein bottle itself can be consideredas a critical
�b er of toric �bration associated with the double covering of a Klein bottle
by a torus. Although a Klein bottle is known to be a generic critical �b er for
toric foliations this critical �b er rarely appears in applications [5]. What kind
of integrable systemscan lead to generic �b ers of Klein bottle type remains an
open problem.
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a b0
c

b00

Figure 11: Self overlapping of a lower cell of the unfolding image of the energy-
momentum map.

5 Multi-comp onent energy momen tum map, bi-
drom y and so on

Another generalization of monodromy is based on the analysis of images of
energy-momentum mapswith several components. A rather complicated exam-
ple of multicomponent maps ariseseven for such a naturally simple integrable
model as a Manakov top [57]. A much more simpler exampleof the appearance
of a secondcomponent was shown in Figure 1 c, where the secondcomponent
appearsas a result of a Hamiltonian Hopf bifurcation [19, 20] leading to trans-
formation of an isolated focus-focus singular point into a secondleaf attached
to the main leaf through a family of singular �b ers, named bitori (seeFigure
2 c). Such creation of the secondleaf evidently cannot modify the nontrivial
monodromy associated with an initial isolated singular point and consequently
the nonlocal monodromy is associated with the closed path surrounding the
whole secondleaf on the image of the energy-momentum map. More precisely,
we should say that the closedpath goesaround bitorus stratum responsible for
joining two components into one. Examples of such a transformation are well
known in di�eren t molecular exampleslike a hydrogen atom in �elds [20], or an
LiCN [36, 22] molecule. It should be also noted that the appearanceof the sec-
ond leaf on the image of the energy-momentum map could also result from the
fold type catastrophe [15]. In such a casethe secondcomponent typically ap-
pearswithin the regular region of the image of the energy-momentum map and
consequently the monodromy transformation associated with the closed path
surrounding the secondleaf should remain trivial in this case.

Another possibility of getting the secondleaf appears in a rather di�eren t
situation associated in fact with the self-overlapping of the sameleaf (seeFigure
1 d). The organization of the image of the energy momentum map can be
explained by using a schematic \unfolding" procedurerepresented in Figure 11,
which can be more accurately explained by intro ducing notions of upper and
lower cells for singular toric �brations as it is done in detail in [46].

The speci�cit y of the situation is due to the fact that a certain region of
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the image of the energy-momentum map has two regular tori as an inverse
image (points b0 and b00 in Figure 11). At the same time we can choose a
continuousfamily of regular tori allowing deformation of onetorus in this region
into another. The possibility of such a deformation leads to an unambiguous
de�nition of three tori lying close to a bitorus �b er (point c in Figure 11) on
three locally di�eren t leavesof the image of the energy-momentum map. This
construction givesthe possibility to de�ne the crossingof a bitorus line in such
case. The tentativ e de�nition of corresponding splitting of cell and path when
crossing the bitorus line and fusion of bipath into one path along with two
cell fusion was named bidromy [54]. The bidromy phenomenonwas initially
illustrated on a rather complicated exampleof a three degreeof freedomsystem
with special resonance1 : 1 : 2 [30, 54] but essentially the same qualitativ e
behavior can be observed for a 2-degreeof freedom dynamical system. An
exampleof such behavior was even found in such simple quantum systemsas a
hydrogen atom in the presenceof electric and magnetic external �elds [25, 24].

6 Time evolution and mono drom y

Up until now I have discussedonly a \static", in some sense,manifestation
of Hamiltonian monodromy, namely special arrangements of joint spectrum of
mutually commuting operators. A quite interesting direction of further inves-
tigation is related with the analysis of monodromy manifestations during time
dependent processes.The generalunpreciseidea is to realizethe time-dependent
evolution of the dynamical system corresponding in somesenseto going along
a closedpath surrounding a singularity in the energy-momentum space. The
initial question in such a construction is about what should be observed and
what �ngerprin ts of monodromy could be found. The �rst step in this direction
wasmadeby Deloset al [13, 14] using very simple toy problem, namely the mo-
tion of a singleparticle in an axially symmetric billiard with a parabolic barrier
potential. This problem possessesmonodromy in its stationary Hamiltonian
formulation. In order to seethe nontrivial dynamic e�ect of monodromy, one
needsto follow the evolution of a family of particles and to choose a special
time-dependent perturbation which allows to change values of the integral of
motion in, say, an adiabatic way. The dynamic manifestation of monodromy
consistsin the nontrivial topological modi�cation of an initial spatial distribu-
tion of particles after following a closed path in the energy-momentum space
and returning to the initial values of integrals of motion. The most di�cult
step in the realization of such a time-dependent processesis to �nd the pre-
cise form of the time dependent perturbation which satis�es all theoretically
imposedassumptionson the form of perturbation and to realize it practically.
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7 Perspectiv es

The notion of monodromy can be related to problems which are quite far from
the classicalHamiltonian integrable systems,or model quantum molecules.The
idea of such a generalization is basedon the relation betweendefectsof regular
patterns and the monodromy. Namely, many defectsof regular lattices which
appear in solid state physicscanbeconsideredasa cumulativ eresult of a number
of elementary monodromy defectsand can be treated assomecomplicated non-
elementary defectsfrom the point of view of monodromy defects. It is clear that
the choiceof \elementary bricks" is not unique. Even though the mathematical
description of defects in solid state physics and in toric �brations related to
dynamical Hamiltonian systems,or in other models turns out to be similar, the
relevanceof thesemathematical constructions should be confronted to physical
reality.

From the physical point of view the origin of defects in solids is due to
imperfection of the crystal growth. Someof 2D-point defectslike disclinations
has a natural description in terms of several elementary monodromy defects.
Someothers, like vacations, have nothing to do with monodromy, becausethey
are not related to the topology of the lattice. We can try to generalize the
mathematical description of defectsin terms of elementary monodromy defects
and to look from this point of view for typical singularities (defects) of almost
regular patterns appearing in di�eren t domains. The general idea behind this
is to �nd interpretation of defects in terms of natural \elementary ones" and
to specify the genericmost frequently appearing defectsand to �nd a possible
explanation of their appearance.

Regular patterns with defectscan appear not only in solid state, with each
point being associated with an atom or molecule,but in more complex systems
like plants with regular patterns being associated with leavesor seeds,reecting
the morphogenesisor the plant development. The most striking exampleof such
a regular pattern formation is the phyllotaxis, intriguing scientists working in
di�eren t �elds even quite far from biology. Let us just cite Leonardo da Vinci,
Kepler, Bravais, Turing, Coxeter, .. [1].

The phenomenonof phyllotaxis describesthe morphology of many botanical
objects. It exists in the arrangement of repeated units such as leaves around
a stem in various plants, seedsof a pine-conesor of a sunower, scalesof a
pineapple, etc. The most widely known is the spiral phyllotaxis associated in
a major part of caseswith lattices formed by left hand and right hand spirals
whosenumber are found to be consecutive numbers in the Fibonacci sequence
1; 1; 2; 3; 5; 8; :::; ak ; ak+1 ; ak+2 = ak + ak+1 ; :::. The interdisciplinary character
of the phyllotaxis phenomenonis clearly seenon the example of pattern for-
mation by drops of ferro-uids in a magnetic �eld [16] or by ux lattices in
superconductors [38].

The enormousliterature devoted to the study and to the explanation of the
universalbehavior of botanical patterns mainly dealswith a peculiar presenceof
Fibonacci numbers and chemical regulation of their presence(see[34, 64, 1, 50,
35, 58] and referencestherein). Characterization of the resulting pattern from
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Figure 12: Sunower with 55 right spirals (parastichies) indicated by additional
lines to guide the eyes.

Figure 13: The same sunower as in Figure 12, but now 34 left spirals are
indicated.
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Figure 14: \Suno wer lattice" formed by left and right spirals shown in previous
�gures 12, 13. The transformation of an elementary cell of this lattice along the
closepath surrounding the central singularity showsthe presenceof monodromy,
related to a 2� self-rotation of the elementary cell (seethe text).
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the point of view of the singularity responsible for the pattern formation and
its monodromy hasnot beendescribed earlier in the literature up to our knowl-
edge. The appearanceof defects within the spiral pattern and modi�cations
of (n1; n2) into (n0

1; n0
2) patterns has been discussedon several occasions[56],

but the most essential persistent feature of global organization of spirals due
to the characteristic relation betweena locally regular lattice and its nontrivial
behavior around the growing center has not beenrelated to a monodromy like
notion.

I would like here to demonstrate the manifestation of a phyllotaxis mon-
odromy on the sunower example and to formulate several questions about
universality of the patterns, associated defects,and relevanceof such defectsto
evolution processesnot only in botanic, but in other �elds of science.

First of all, taking an example of sunower with 34 left and 55 right eye-
guided spirals - parastichiesin biological language- (seeFigure 12) we note that
locally regular lattice canbeconstructedby explicitly plotting spirals (seeFigure
13). In any local simply connectedregion this lattice can be easily transformed
into a regular lattice but globally it has an easily seendefect - the apex. In
order to seethe nontrivial e�ect of the apex region on the lattice we take the
elementary cell in any regular part of the lattice and move it step by step along
a closedpath surrounding the apex region (seeFigure 14). At each step the
local regular structure allows us to move the elementary cell unambiguously,
even though the lattice itself and the corresponding elementary cell could be
chosenin a di�eren t way becausethe basisof the lattice is de�ned as usual up
to an SL(2; Z ) similarit y transformation 1. It is important to keep the vertices
of the cell labeledat each step of the lattice displacement. We useletters a and
b in Figure 14.

It is easy to verify that after following a closed path which does not go
around the apex the elementary cell returns to its initial position. Apparently
the samesituation occurs after going along a closedpath surrounding oncethe
apex. But the principal di�erence is that in this case(shown in Figure 14) the
cell returns to its original position after making a 2� self-rotation around axis
passingthrough the center of the cell in an orthogonal to the cell-plane direc-
tion. From the point of view of Hamiltonian monodromy the comparisonof the
initial cell and the �nal cell canbe expressedby an identit y matrix which is asso-
ciated with a trivial monodromy. At the sametime the closedpath is evidently
non-contractible and in order to characterize the singularity (or the defect) re-
sponsible for this non-trivialit y we need to add another topological invariant
associated with the closedpath, namely the self-rotation number which can be
positive, negative or zero. According to the earlier formulated correspondence
between a cell transportation around a defect and the \mono dromy defect"
construction (by removing or inserting a wedge) the positive numbers of self
rotation correspond to defectswith removing wedge. Thesedefectscorrespond
to typical singularities (focus-focus) for Hamiltonian systems. The direction of

1The corresponding ambiguit y in the choice of parastichies was equally mentioned in liter-
ature discussing the geometrical aspects of phyllotaxis [7]
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self-rotation of the cell is well de�ned for an arbitrary number of focus-focus
singularities in Hamiltonian systems[11, 12, 66]. This direction is related to the
fact that the corresponding defect is producedby removing a certain number of
wedgesfrom the lattice. It is important to note that the direction of \p ositive"
self-rotation should be de�ned only after specifying the direction of the closed
path going around the singularity. The rotation can be de�ned positive if the
cell turns from the v1 to v2 in the shortest way, where v1 is a vector de�ning
the direction of the path surrounding the singularity, and v 2 is a vector joining
the cell and the singularity. More formally, the triple product (v 1; v2; R ) > 0
should be positive, where R is the axial vector giving the self-rotation of the
cell.

In a more intuitiv e way we can say that the positive choice of the cell's
self-rotation coincides with the senseof rotation of a wheel (representing the
cell) turning around another wheel (representing the singularity), if the \cell"
rolls around the \singularit y" without slipping. Unfortunately , in order to get
in such a representation the value of the self-rotation angle to be equal to 2� ,
the radius of a wheel representing the singularity should be chosento be equal
to 0.

The choiceof the sign of the monodromy defect observed for a wide rangeof
botanic patterns seemsto be rather fundamental property similar in the spirit
to the left-righ t asymmetry and time irreversibilit y. A number of interesting
questions naturally arise provoked by this supposition. Can the evolution of
the plants be modeled by a dynamical system with the sourcebeing associated
with a genericsingularity characterizedby an identit y monodromy and positive
2� self-rotation? Does the sign of self-rotation reect speci�c properties of the
system? We end with an even more generaltentativ e speculation: Is the generic
singularity associated with irreversible time evolution (growing process)always
characterized by a trivial (identit y) monodromy with positive 2� self-rotation?
Is it possibleto apply this conjecture to the evolution of our Universe?
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