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Classical and quantum fold catastrophe in the presence of axial symmetry
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We introduce a family of Hamiltonians with two degrees of freedom, axial symmetry and com-
plete integrability. The potential function depends on coordinates and one control parameter. A
fold catastrophe typically occurs in such a family of potentials and its consequences on the global
dynamics are investigated through the energy-momentum map which defines the singular fibration
of the four-dimensional phase space. The two inequivalent local canonical forms of the catastrophe
are presented: the first case corresponds to the appearance of a second sheet in the image of the
energy-momentum map while the second case is associated to the breaking of an already existing
second sheet. A special effort is placed on the description of the singularities. In particular, the
existence of cuspidal tori is related to a second order contact point between the energy level set
and the reduced phase space. The quantum mechanical aspects of the changes induced by the fold
catastrophe are investigated with the quantum eigenstates computed for an octic potential and are
interpreted through the quantum-classical correspondence. We note that the singularity exposed in
this paper is not an obstruction to a global definition of action-angle variables.

PACS numbers: 45.20.Jj Lagrangian and Hamiltonian mechanics; 33.20.Tp Vibrational analysis
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I. INTRODUCTION

Quantum mechanics is the natural theoretical
framework for a quantitative description of the
properties of atoms and molecules. Classical me-
chanics should however not be completely dis-
carded. In the last decades, sophisticated con-
cepts have emerged that provide a geometric view
of the dynamics while bifurcation theory taught us
the central role of singularities. The relevance of
the quantum-classical correspondence for a quali-
tative understanding of quantum systems has been
pointed out in Refs. [1, 2], where previously un-
noticed important features in the quantum ana-
logue of the classical systems were revealed. This
approach proves useful for the global analysis of
completely integrable few-body models. The exact
Hamiltonians of atoms or molecules do not natu-
rally belong to this category but their important
qualitative features are reproduced by integrable
approximations.

The integrals of motion of completely integrable
systems define a singular fibration of the classi-
cal phase space and the equations of motion take
their simplest expression in locally defined action-
angle coordinates. Duistermaat [3] and Cush-
man [4, 5] introduced the concept of Hamiltonian
monodromy which is an obstruction to the global
definition of action-angles variables. Many com-
pletely integrable models of atomic and molecular
systems with two or three degrees of freedom are
known to have monodromy [6, 7]. This property
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exists in the coupling of two or three angular mo-
menta [8, 9], in some floppy molecules described
by spherical pendulum-like models [5], in the La-
grange top [10], in the bottle champagne poten-
tial [11, 12] which is akin to the bending motion
of quasi-linear molecules (see also Ref. [13]), in the
hydrogen atom in electromagnetic fields [14–17],
in the problem of two fixed centers [18] describing
H2

+ and HHe2+ molecular ions, and in the three-
dimensional elastic pendulum [19–21] which is a
model for the 1 : 1 : 2 resonance of the carbon
dioxide.

The singularities worth the consideration in
physics are the structurally stable ones [22, 23],
that is, singularities that are still present after
a small perturbation of the system. Hamilto-
nian monodromy gives an example: it originates
from the existence of a pinched torus in the phase
space and this phenomenon persists under a small
perturbation. It may happen that a singular-
ity of a system is unstable under a perturbation
but is structurally stable in a family of systems.
Catastrophe theory helps in classifying the possi-
ble changes that may occur in such a family where
one or more control parameters comes into play.
The main ideas of this theory have been used by
Gilmore, Kais and Levine [24] in the study of a
one-dimensional system with the cusp catastrophe
as the potential energy term of the Hamiltonian.
The signatures of the fold and cusp catastrophes
were looked for from the classical and quantum
mechanical points of view.

The qualitative analysis of completely integrable
systems is concerned with global properties such as
the filling of the phase space by regular and singu-
lar fibers or the typical singularities that are sus-
ceptible to appear [25]. The relationship between
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the phase space and the set of constants of mo-
tion is established through the energy-momentum
map [4]. In particular, the Mineur-Liouville-
Arnold theorem [26–28] states that the preimage
of a regular value in the image of the energy-
momentum map consists in at least one torus.
The quantum-classical correspondence establishes
a relationship between the classical actions vari-
ables and the quantum numbers via the Einstein-
Brillouin-Kramers quantization of the tori. The set
of eigenvalues of the commuting observables (joint
spectrum) of the quantum analog of a completely
integrable Hamiltonian defines a lattice [29] in the
image of the energy-momentum map. Typical im-
ages of the energy-momentum map of two degrees
of freedom systems with axial symmetry have al-
ready been exposed in the literature and we re-
view the simplest typical cases before presenting
our new result.

Figure 1(a) illustrates the simplest conceivable
open subset in the image of the energy-momentum
map: the grey domain contains only regular val-
ues that lift to one regular T2 torus. The quan-
tum lattice obtained from the quantum analog
of the system is superposed on the same figure.
This lattice is locally isomorphic to the Z × Z set
and is therefore completely regular. This regular-
ity is confirmed by drawing a series of elementary
cells [8] along any closed loop. The example drawn
in Fig. 1(a) demonstrates that the initial and final
cell are identical.
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FIG. 1: Typical open subsets of the image of the
energy-momentum map for a two degrees of freedom
completely integrable system when the first action is
a global action. The lattice of dots represents the
joint spectrum of commuting observables and the filled
quadrilaterals describe the evolution of an elementary
cell along one closed loop. (a) Open subset with only
regular values. (b) Open subset with regular values
and one singular value indicated by the circle. (c) Open
subset with two sheets of regular values glued along a
singular dashed curve.

A non trivial case is the integer monodromy
which is characterized by the existence in the im-
age of the energy-momentum map of an open sub-
set where one critical value for a two degrees of
freedom system [see the circle in the center of
Fig. 1(b)] or one critical thread for a three de-

grees of freedom system [21] is present. The con-
sequence of monodromy is that any torus bundle
over a closed loop of regular values that encircles
the singularity is non-trivial. The deformation of
elementary cells drawn along this loop shows that
the initial and final cells are different: quantum
monodromy is interpreted as a defect in the lattice
of the joint spectrum [30].

The two previous cases illustrated by Figs 1(a,b)
are in some sense elementary, for the preimage
through the energy-momentum map of a regular
value consists of a unique regular torus. The sit-
uation depicted in the integer monodromy case
can be deformed to generate a more complex case.
The preimage of points in the light grey region of
Fig. 1(c) consists of one torus whereas the preim-
age of points in the dark grey region is composed of
two tori. We can draw a parallel between this prop-
erty and the Riemann surface of multivalued func-
tions in the complex plane: the (m, h) plane can
be organized in sheets, such that: (1) the preim-
age of a regular point of a sheet consists of one
and only one regular torus and (2) the torus re-
lated to one point of one sheet can be continu-
ously deformed to any other tori associated with
points on the same sheet. A first sheet is defined
on the whole (m, h) region visible on Fig. 1(c).
The critical value of Fig. 1(b) becomes a finite
curve [dashed curve of Fig. 1(c)] and a second
sheet of classical values is glued along this curve.
The evolution of elementary cells along a closed
loop around the dashed curve proves the existence
of the so-called nonlocal monodromy. The quan-
tum correspondence of these two sheets of clas-
sical values is the superposition of two quantum
lattices. Nonlocal monodromy has been proved
to exist in the quadratic pendulum [31] and its
physical realization, the LiNC/NCLi molecule [32].
The HCN/CNH molecule [33], albeit similar to the
LiNC/NCLi case has no monodromy due to the im-
possibility of defining a loop around the non-local
singularity that would go over regular values only,
which is a requirement for studying monodromy.

This paper presents a system where two sheets
of classical values exist and are glued along a sin-
gular curve. However, on the contrary to systems
with nonlocal monodromy, there is no monodromy

around the singular curve. Section II introduces a
one-parameter family of completely integrable sys-
tems that describes the dynamics of a point mass
in a plane. The complete symmetry group of the
Hamiltonian is determined and the axial symmetry
is used to reduce the dimensionality of the prob-
lem. Section III discusses the two canonical forms
originating from the fold catastrophe which gener-
ically exists in this family. Section IV illustrates
these two possible cases with a potential written
as an octic polynomial and discusses the quantum-
classical correspondence.
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II. A CLASS OF AXIALLY INVARIANT

HAMILTONIANS

A. Mechanical system

A mechanical model of a two degrees of freedom
autonomous system may be thought of as a particle
of mass M moving on a plane P under the action
of conservative forces. The two-dimensional real
space R

2 stands for the configuration space and
the Hamiltonian H is a scalar function defined on
the cotangent bundle R4. The Hamiltonian (1) is
assumed to be the sum of a kinetic energy term
and an axially symmetric potential:

H : R
4 → R (1)

(q̃x, q̃y, p̃x, p̃y) 7→
p̃2

x + p̃2
y

2M
+

imax
∑

i=0

b2i

(

q̃2
x + q̃2

y

)i

(b2imax
> 0).

The (p̃x, p̃y) pair of variables are the conjugate mo-
menta of the (q̃x, q̃y) Cartesian coordinates. The
b0 constant is the first term in the expansion of
the potential and plays a trivial role in the Hamil-
tonian by merely translating the origin of the en-
ergy scale and accordingly is set to zero. A scaling
transformation q̃i = αqi, p̃i = pi/α, i ∈ {1, 2}
modify Hamiltonian (1) into the simpler form (2).

H : R
4 → R (2)

(qx, qy, px, py) 7→
p2

x + p2
y

2
+

imax
∑

i=1

c2i

(

q2
x + q2

y

)i

(c2imax
= 1).

B. Symmetries of the Hamiltonian

Symmetries simplify the problem at hand and
often have fingerprints in the dynamics of the sys-
tem. The complete symmetry group of Hamilto-
nian (2) contains both continuous symmetries (ro-
tational symmetry) and discrete symmetries (re-
flections through a plane containing the z-axis and
the time-reversal operation).

1. Rotational symmetry

The group of rotations Ct of angle t, 0 ≤ t < 2π,
around the third axis z perpendicular to the plane
P is isomorph to the SO(2) group. It induces a
transformation (3) between the qx and qy coordi-

nates and between the px and py momenta:

Ct : [0; 2π[×R4 → R4

t ×







qx(0)
qy(0)
px(0)
py(0)






7→ M(t)







qx(0)
qy(0)
px(0)
py(0)






,

(3a)

M(t) =







cos t − sin t 0 0
sin t cos t 0 0
0 0 cos t − sin t
0 0 sin t cos t






, (3b)

where M(t) is a block-diagonal rotation matrix.
This transformation induces 2π-periodic orbits in
the phase space and defines a S1 group action. The
one-parameter continuous symmetry implies by
virtue of Noether’s theorem that the z-component
of the angular momentum [see Eq. (4)] (simply
called angular momentum in the rest of the paper)
is a constant of motion.

M : R
4 → R, (qx, qy, px, py) 7→ qxpy − qypx. (4)

2. Plane reflection

The operations σt consist of the reflection of the
coordinates and momenta through the line (Ox)
rotated by an angle t around the z-axis. Equa-
tion (5) describes the block-diagonal matrix repre-
sentation of the transformation.

σt : [0; π[×R4 → R4

t ×







qx(0)
qy(0)
px(0)
py(0)






7→ N(t)







qx(0)
qy(0)
px(0)
py(0)







, (5a)

N(t) =







cos 2t sin 2t 0 0
sin 2t − cos 2t 0 0

0 0 cos 2t sin 2t
0 0 sin 2t − cos 2t






.(5b)

3. Time reversal

Hamiltonian (2) is invariant under the time re-
versal operation T which acts as the identity op-
eration on the pair of (qx, qy) coordinates but re-
verses the sign of the pair (px, py) of conjugate mo-
menta:

T : R
4 → R

4, (qx, qy, px, py) 7→ (qx, qy,−px,−py).

4. Complete symmetry group of the Hamiltonian

The group generated by all products of the Ct

and σt operations is isomorphic to the C∞v group
in the Schönflies notation. The total symmetry
group of the Hamiltonian H is the direct product
C∞v × {E, T }.
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C. Symmetry reduction

The symmetry of the system is now used to
transform the initial four-dimensional problem into
a two-dimensional problem only. The S1 action de-
fines an equivalence relation in phase space. All the
points of one orbit are identified to one point of the
space of orbits or orbifold [34]. The conservation
of the angular momentum restricts the dynamics
of the particle and a given value of the constant
of motion defines a slice of the orbifold. As a con-
sequence, the final space has two dimensions less
than the original phase space.

Equation (3) reveals that the action of the SO(2)
group on the phase space leaves invariant the point
at the origin (0, 0, 0, 0) and the action is therefore
not free. The adapted procedure is the singular re-
duction [4] and is presented in subsection II C 1. A
simpler but less rigorous procedure based on polar
coordinates is exposed in subsection II C 2.

1. Singular reduction

The Hamiltonian (2) is the sum of a kinetic en-
ergy quadratic term and of a potential depending
only on q2

x + q2
y. The singular reduction procedure

is based on the construction of a ring of SO(2)-
invariant polynomials [35] which are functions of
coordinates and conjugate momenta. These invari-
ant polynomials are easily built up in complex co-
ordinates z1 = qx + ı̇qy, z2 = px + ı̇py for the effect
of the SO(2) action is equivalent to a multiplica-
tion by a phase factor e±it :

{

zj → eitzj

z̄j → e−itz̄j
j ∈ {1, 2}.

The four SO(2) invariant quadratic polynomials
R, T , K, and L are displayed in Table I. We
introduce two other polynomials X and Y which
are linear combinations of the T and R polyno-
mials. The syzygy X2 + K2 + L2 = Y 2 shows
that the four polynomials (X, Y, K, L) are alge-
braically dependent. We consider X , Y , and L
as the principal invariant polynomials and K as
the auxiliary polynomial. Such a choice and the
syzygy relation means that any SO(2)-invariant
function can be uniquely decomposed as a linear
combination of the polynomials contained in the
set
{

XpY qLrKs|(p, q, r) ∈ N3, s ∈ {0, 1}
}

.
The definition of L as given by Table I is just half

the angular momentum of Eq. (4). The polynomial
L is a constant of the motion for Hamiltonian (2)
and is equal to m/2 where m is the value of the
angular momentum. The syzygy relation and the
property that Y is always positive by construction
implies that Y considered as a function of X , K
and m defines a set {Sm}m∈R of two-dimensional

TABLE I: SO(2)-invariant polynomials.

Complex coordinates Cartesian coordinates

R 1

4
z1z̄1

1

4

`

q2
x + q2

y

´

T 1

4
z2z̄2

1

4

`

p2
x + p2

y

´

X 1

4
(z2z̄2 − z1z̄1)

1

4

`

p2
x + p2

y − q2
x − q2

y

´

Y 1

4
(z2z̄2 + z1z̄1)

1

4

`

p2
x + p2

y + q2
x + q2

y

´

K 1

4
(z1z̄2 + z̄1z2)

1

2
(qxpx + qypy)

L ı̇

4
(z1z̄2 − z̄1z2)

1

2
(qxpy − qypx)

reduced phase spaces parameterized by the value
of the angular momentum. Figure 2(a) shows that
the reduced phase space for m = 0 has a conical-
shape singularity at the origin. All the other re-
duced phase spaces are smooth, as exemplified by
Fig. 2(b) for m = 2. The point at the tip of the
m = 0 surface lifts to a single point and all the
other points of the m = 0 surface or m > 0 sur-
faces lift to a circle.

X
K

Y

(a)

X
K

Y

(b)

FIG. 2: Reduced phase spaces of a two degrees of free-
dom SO(2) invariant Hamiltonian in the space of in-
variant polynomials (X, K, Y ). (a) Singular reduced
phase space for m = 0. (b) Smooth reduced phase
space for m = 2.

The behavior of the invariant polynomial upon
the time-reversal operation depends on the even-
ness or oddness of the total degree of the mo-
menta variables. The R, T , X , and Y are invariant
whereas the K and L polynomials change sign.

2. Polar coordinates

The potential of Hamiltonian (2) is axially sym-
metric and polar coordinates (ρ, qϕ) and their con-
jugate momenta (pρ, pϕ) decouple the two degrees
of freedom. The momentum pϕ is the angular mo-
mentum and is a constant of motion which can be
replaced by its value m. In polar coordinates, the
Hamiltonian is read as a one-dimensional Hamil-
tonian:

Hpol,m : R+ × R → R

(ρ, , pρ) 7→
p2

ρ

2 + Veff(ρ; m2)
, (6)
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with an effective potential Veff

Veff(ρ; m) =
m2

2ρ2
+ V0(ρ), (7a)

V0(ρ) =

imax
∑

i=1

c2iρ
2i. (7b)

D. Energy-momentum map

1. Definition

The time-independent Hamiltonian (2) is com-
pletely integrable and has two integrals of motion
(energy and angular momentum). The relation be-
tween the initial phase space and the set of con-
stants of motion is described through the energy-
momentum map:

EM : R
4 → R

2

(qx, qy, px, py) 7→

(

M(qx, qy, px, py)

H(qx, qy, px, py)

)

.
(8)

The relative equilibria (stationary points of the
reduced Hamiltonian) are orbits of the action of
the SO(2) symmetry. They are critical values of
the energy-momentum map and define parameter-
ized curves in the image of the energy-momentum
map [11]. The angular momentum of such relative
equilibria is determined by looking for stationary
points in the one-dimensional radial effective po-
tential while the term h(ρ) = Veff(ρ; m(ρ)) gives
their energy:

(

m(ρ)

h(ρ)

)

=





±

√

ρ3
(

dV0

dρ
(ρ)
)

V0(ρ) + ρ
2

dV0

dρ
(ρ)



 ,

for ranges of ρ such that dV0

dρ
(ρ) > 0.

2. Symmetry

The value of the angular momentum changes
sign under the time-reversal operation while the
value of the energy is left unchanged. These prop-
erties implies that every point (m, h) in the image
of the energy-momentum map has a counterpart
(−m, h) with the angular momentum reversed. We
conclude that the image of the energy-momentum
map is symmetric with respect to the change of
sign of the angular momentum.

III. FOLD CATASTROPHE IN A FAMILY

OF POTENTIALS

A. Local description of a potential

1. Noncritical points and Morse critical points

The topology of the potential energy function
may have a direct influence on the properties of an
Hamiltonian system [36]. A qualitative approach
of the local dynamics in the neighborhood of a
point of the configuration space is based on the
inspection of the first few terms of the Taylor ex-
pansion of the potential. Noncritical points and
critical points are two qualitatively different types
of points that typically exist for a given potential.
The gradient of the potential does not vanish at
a noncritical point and implies the existence of a
force which acts on the particle(s) of the system.
An equilibrium is located at a Morse critical point
where the gradient and the force vanish but the
next term in the Taylor expansion, that is, the
quadratic form, is nondegenerate. A Morse crit-
ical point persists under a small perturbation even
if its position and the value of the function at such
a point changes slightly.

2. Degenerate critical points

The quadratic form at a degenerate critical point
is degenerate. The degeneracy is partially or com-
pletely lifted under a small perturbation and these
points are not structurally stable. However, de-
generate critical points may generically appear in a
family of function when at least one control param-
eter enter the representation of the function. The
fold catastrophe is the simplest case of Thom’s el-
ementary catastrophes [22, 23, 37] and the unfold-
ing of its germ requires only one control parameter.
The polynomial x3 + λx describes the local pro-
cess of the creation or coalescence of a minimum
and a maximum. Fig. 3 illustrates the evolution
of the function f with the parameter λ. The func-
tion f has two extrema when λ is negative and is
monotonically increasing for positive λ. The func-
tion for λ = 0 with a degenerate critical point at
the origin marks the transition between these two
qualitatively different behaviors.

3. A family of local potentials

We consider the local consequences of a fold
catastrophe in a potential V0 with one control pa-
rameter. The local one-dimensional effective po-

tential V loc,-
eff or V loc,+

eff is written in the neighbor-
hood of ρ0 as the sum of a cubic polynomial and a
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FIG. 3: Fold catastrophe: the germ (λ = 0, solid curve)
and its unfolding for λ = −0.1 (dashed line) and λ =
0.1 (dotted line).

repulsive term:

V loc,-
eff (ρ; m; λ) = − (ρ − ρ0)

3
+ λ (ρ − ρ0)

+
m2

2ρ2
, (9a)

V loc,+
eff (ρ; m; λ) = + (ρ − ρ0)

3 + λ (ρ − ρ0)

+
m2

2ρ2
. (9b)

The two parameters m and λ have distinct phys-
ical origins. The reduction with the S1 action of
the initial axially symmetric Hamiltonian induces a
new Hamiltonian where the angular momentum m
appears as a constant of motion through Noether’s
theorem. As a consequence, m describes the inter-

nal dynamics of the system. On the contrary, the
parameter λ is an external parameter which re-
flects tunable external forces imposed on the sys-
tem.

The first two terms of Eq. (9a) and (9b) are simi-
lar to the canonical form of the fold catastrophe ex-
cept for the sign in front of the cubic term. The two
possible cases are distinct due to presence of the
repulsive term that appears after reduction of the
rotational symmetry. This term forbids the sym-
metry operation ρ − ρ0 7→ − (ρ − ρ0) that is per-
formed in canonical catastrophe theory [37]. Sub-
section III B discusses the consequences of the first
case given by Eq. (9a) whereas subsection III C
treats the second case described by Eq. (9b).

B. Case I: appearance of a second sheet

1. Critical points in the effective potentials

A stationary point of the effective potential is
a relative equilibrium of the original system. The
local effective potential of Eq. (9a) is plotted for
five values of m2 on Fig. 4 for three values of λ
around and including zero. Fig. 4(a) shows that
the effective potentials are decreasing monotonic
functions for λ < 0 and for any m2. They have
no stationary points. When the control parameter

vanishes, one degenerate critical point appears at
ρ = ρ0 for the m = 0 thick curve on Fig. 4(b). The
effective potentials for all other m values are de-
creasing monotonic functions. The situation where
λ > 0 is the richest, see Fig. 4(c). The effective po-

tential V loc,-
eff (ρ; mdeg,I(λ); λ) has a degenerate crit-

ical point at ρ = ρdeg,I(λ). This curve separates
the potentials with m < mdeg,I(λ) that have one
minimum and one maximum from the potentials
with m > mdeg,I(λ) that are decreasing monotonic
functions and have no stationary points. Using
the property that both first and second derivatives
vanish at the critical point, we find the position,
the angular momentum, and the energy of this
point as a function of the control parameter λ:

ρdeg,I(λ) =

(

4 +

√

1 + 5
λ

ρ2
0

)

ρ0

5
, (10a)

m2
deg,I(λ) = −

2

3125

(

1 −

√

1 + 5
λ

ρ2
0

)

×

(

4 +

√

1 + 5
λ

ρ2
0

)4

ρ5
0, (10b)

hdeg,I(λ) = V loc,-
eff (ρdeg,I(λ); mdeg,I(λ); λ).

(10c)

We note from Eq. (10a) that the position of the
degenerate critical point (which exists only for λ ≥
0) is an increasing function of λ. We conclude that
in general, the effective potential has no stationary
point, except for the important case where λ is
positive and the angular momentum is less than
the critical value mdeg,I(λ).

2. Reduced phase space and tori

The axially symmetric Hamiltonian with poten-
tial (9a) is a function of the invariant polynomi-
als T and R or, equivalently, a function of the
invariant polynomials X and Y . The levels sets
H(X, Y ) = h of the Hamiltonian define a family of
two-dimensional surfaces Sh parameterized by the
energy h in the three-dimensional space (X, K, Y ).
The invariant tori of the initial phase space R

4 are
reconstructed for a given angular momentum m
and energy h from the intersection Im,h between
the surface Sm of the reduced phase space and the
surface Sh of the energy level set [4]. The parame-
terization of Sh does not depend on the polynomial
K and it is convenient to project both Sm and Sh

surfaces on the (X, Y, K = 0) plane. The grey
domains Dm of Fig. 5 are projections of the Sm

surface on the K = 0 plane while the projection
of the Sh surface is drawn as a dotted curve Ch.
The projection of the intersection Im,h is the part
of the curve Ch contained in the domain Dm. A
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FIG. 4: Local effective potential V
loc,−

eff
(ρ; m; λ) for

ρ0 = 2 and a fixed set of five values of angular momen-
tum m. The effective potential with m = 0 is repre-
sented by a thick curve. Angular momentum increases
(values: m1 = 0.5, m2 = 0.8, mdeg,I(0.1) ≃ 0.903, m3 =
1.0) when jumping from one potential curve to the
upper one. Filled squares indicate degenerate critical
points. (a) Control parameter λ = −0.1. (b) Con-
trol parameter λ = 0. (c) Control parameter λ = 0.1.
Positions of the minima and maxima of the effective
potentials are indicated by the dashed curves.

point of Ch inside the domain Dm is the projection
of two points of Im,h while a point of Ch on the
border of the domain Dm corresponds to only one
point of Im,h.

The local character of the fiber, i.e. regular or
singular, is determined by how the energy level set
crosses the reduced phase space. The crossing pic-
tured on Fig. 5(a,b) is the typical situation associ-
ated with a locally regular torus and happens when
the gradients of the two surfaces differ at the inter-
section point. First-order and higher-order points
occur when the two surfaces Sh and Sm are locally
tangent. The gradients at the intersection point
are identical and the difference between the two
surfaces requires a higher order Taylor expansion.
In such situations, the difference between the two
surfaces near this point may be quadratic [Fig. 5(c-
f)], cubic [Fig. 5(g,h)] or even higher. The intersec-
tion on Fig. 5(c,d) is locally reduced to the point
marked by a diamond and corresponds to a S1 cir-
cle in the initial phase space. Fig. 5(e,f) illustrates
the situation when the projected intersection Im,h

is identical to the full energy level set near the
contact point marked by the triangle. The fiber is
in this case locally diffeomorphic to a bitorus. The

Y

X
K

Y

(a)

Y

X

(b)

Y

X
K

Y

(c)

Y

X

(d)

Y

X
K

Y

(e)

Y

X

(f)

Y

X
K

Y

(g)

Y

X

(h)

Y

X
K

Y

(i)
Y

X

(j)

FIG. 5: Five different cases of intersections between the
reduced phase spaces and the energy level sets. Left
column: three dimensional view in the (X, K, Y ) space
of invariant polynomials. The surfaces drawn in con-
tinuous curves are the reduced phase spaces and the
level sets of the energy are drawn with dashed lines.
The intersections of these two surfaces are drawn as
thick curves whose individual points lift up to S

1 cir-
cles. Right column: projection of the reduced phase
space (grey domain) and the projection of the energy
level sets (dashed curves) in the (X, Y ) space of in-
variant polynomials. (a,b) Regular intersection. (c,d)
First-order contact point, S

1 intersection. (e,f) First-
order contact point, locally bitorus-like intersection.
(g,h) Second-order contact point, locally cuspidal-like
intersection. (i,j) Three regular intersections.

square on Fig. 5(h) is a second-order contact point.
The corresponding fiber is not locally regular as in
Fig. 5(a,b) but has a singular line and is called
a cuspidal torus [38, 39]. Finally, a case where
more than one regular intersection may occur, as
pictured in Fig. 5(i,j). The rightmost part of the
energy level set in the grey domain of Fig. 5(j) lifts
up to a complete regular torus whereas the left-
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most part lifts up to a locally regular torus.

Figure 6 shows the projection of reduced phase
space surfaces and energy level sets on the K = 0
plane obtained from potential (9a) for several val-
ues of the control parameter λ and angular mo-
mentum m. The vertical axis shows the sum of the
two invariant polynomials X and Y : this choice,
rather than the natural choice of Y as in Fig. 5, is
only made for a better legibility of the figure. Most
of the fibers are regular T2 tori and the interest-
ing fibers are naturally the singular ones. All the
fibers are regular T2 tori when λ < 0. This situa-
tion persists for λ = 0, except for one fiber which
is locally similar to a cuspidal torus, see Fig. 6(b).
The last two figures show for λ > 0 three exam-
ples of singular fibers similar to those presented on
Figs. 5(c-h), that is, a S

1 degenerate torus and a
locally bitorus-like fiber [Fig. 6(c)] and a locally
cuspidal-like fiber [Fig. 6(d)].

 0.05

 0.10

 0.15

-1.50 -1.25 -1.00 -0.75

Y
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X

X

(d) λ=0.1 ; m=mdeg.,I(λ)
-0.05
 0.00
 0.05
 0.10

Y
+

X

(c) λ=0.1 ; m=0
-0.05

 0.00

 0.05

Y
+

X

(b) λ=0 ; m=0
-0.05

 0.00

 0.05

Y
+

X

(a) λ=-0.1 ; m=0

FIG. 6: Projections of the reduced phase spaces (grey
domains) and energy level sets (dashed curves) in the
(X, Y +X) space of invariant polynomials for the case I
with ρ0 = 2. The symbols of Fig. 5 are used to label
the singular intersection points.

It should be noted that the time-reversal oper-
ation changes the sign of the value of the angu-
lar momentum and distinguishes the two cuspidal
tori that exist when λ > 0 from the cuspidal torus
that appears for λ = 0. This operation maps for
λ > 0 a cuspidal torus to the cuspidal torus with
opposite angular momentum whereas time-reversal
maps the cuspidal torus for λ = 0 to itself. As a
consequence, the invariance group of the λ = 0
cuspidal torus is bigger than the invariance group
of one λ > 0 cuspidal torus.

3. Image of the energy-momentum map

The understanding of the foliation of the phase
space by regular and singular fibers is improved
with the concept of the energy-momentum map.
Images of the energy-momentum map EM are pre-
sented on Fig. 7 for three values of λ. The left-right
symmetry is a direct consequence of the symmetry
mentioned in Sec. II D 2. The preimage of some se-
lected points is pictured on the left and right sides
of the figure. The Hamiltonian of Eq. (6) gives
a relationship between ρ and pρ that is useful for
visualizing invariant tori:

h =
p2

ρ

2
+ V loc,-

eff (ρ; m; λ).

The radial conjugate momenta is a function of h,
m, and ρ. Due to the rotational symmetry, we can
suppose y = 0 and represent pρ as a function of x.

Figure 7(a) clearly indicates that only one sheet
exists for λ < 0. A point (m, h) inside the sheet
corresponds to one locally regular torus T2. The
description of the situation for λ = 0 is the same,
see Fig. 7(b), except for the appearance of a partic-
ular point at the origin. The preimage of this point
is a locally cuspidal-like torus at (m = 0, h = 0).
Figure 7(c) shows that the situation for λ > 0
is more complex: the light grey domain is a re-
gion where each point lifts through the energy-
momentum map to one locally regular torus T2,
whereas the dark grey domain is a region where
each point lifts to two different locally regular tori
T2∪T2. Note that one of these two tori can be con-
tinuously deformed to any regular torus associated
with the light grey domain. This property strongly
advocates the definition of a first sheet such that
its domain is the whole (m, h) region of Fig. 7(c).
The remaining tori, the ones that cannot be con-
tinuously deformed to a torus in the light grey do-
main, are associated with a second sheet whose
region is restricted to the grey domain. The two
sheets are glued together along the dashed curve,
which is a set of critical values. The preimage of
each of these values is a locally bitorus-like fiber,
where two tori are glued along one singular line.
The remaining border of the second sheet consists
of points that each lifts to a S1 circle (a degenerate
torus).

The main conclusion in case I is that a second

sheet appears as λ becomes positive.

C. Case II: breaking of the second sheet

1. Critical points in effective potentials

The same methodology as above is pursued to
discuss the consequences of Eq. (9b) on the folia-
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FIG. 7: Images of the energy-momentum map in case I. The preimage of a point in the light grey areas is one
torus while the preimage of a point in the dark grey area consists of two tori. Selected points in the image of
the energy-momentum map are marked by a cross and the figures attached to them show the effective potential
(dashed curve), the energy (horizontal dashed curve), and the conjugate momenta pρ (solid curve). (a) Control
parameter λ = −0.1. (b) Control parameter λ = 0. (c) Control parameter λ = 0.1.
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tion of the phase space. The local effective poten-
tials pictured on Fig. 8 show that the situation is
opposite to Fig. 4: the potentials with one mini-
mum and one maximum are now the rule, except
when λ is positive and m < mdeg,II(λ) where the
potential is a monotonic increasing function of ρ.
Curves with a degenerate critical point appear only
for λ ≥ 0. A degenerate critical point appears ex-
actly at ρ = ρ0 for λ = 0 and Eq. (11a) states that
this point moves towards smaller values of ρ when
λ increases. Note that this effect is the opposite to
case I.

ρdeg,II(λ) =

(

4 +

√

1 − 5
λ

ρ2
0

)

ρ0

5
, (11a)

m2
deg,II(λ) =

2

3125

(

1 −

√

1 − 5
λ

ρ2
0

)

×

(

4 +

√

1 − 5
λ

ρ2
0

)4

ρ5
0, (11b)

hdeg,II(λ) = V loc,+
eff (ρdeg,II(λ); mdeg,II(λ); λ).

(11c)
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FIG. 8: Local effective potential V
loc,+

eff
(ρ; m;λ) for

ρ0 = 2 and a fixed set of five values of angular mo-
mentum m. The effective potential with m = 0 is
represented by a thick curve. Angular momentum in-
creases (values: m1 = 0.5, m2 = 0.8, mdeg,II(0.1) ≃
0.886, m3 = 1.0) when jumping from one potential
curve to the upper one. Filled squares indicate de-
generate critical points. Positions of the minima and
maxima of the effective potentials are indicated by
the dashed curves. (a) Control parameter λ = −0.1.
(b) Control parameter λ = 0. (c) Control parameter
λ = 0.1.

2. Reduced phase space and tori

Figure 9 is the counterpart for the potential (9b)
of Fig. 6. The most striking difference with case I
is the existence of S1 degenerate tori and locally
bitorus-like fibers even for negative values of the
control parameter, as shown on Fig. 9(a) and
Figs. 9(c-d). However, the appearance of lo-
cally cuspidal-like tori only occurs for λ ≥ 0 [see
Fig. 9(b) and Fig. 9(e)] exactly as in case I.
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(a) λ=-0.1 ; m=0

FIG. 9: Projections of the reduced phase spaces (grey
domains) and energy level sets (dashed curves) in the
(X, Y + X) space of invariant polynomials for the
case II with ρ0 = 2. The symbols of Fig. 5 are used to
label the singular intersection points.

3. Image of the energy-momentum map

The images of the energy-momentum map on
Fig. 10 are fundamentally different from those pic-
tured in Fig. 7 for case I. We do not see anymore
the creation or annihilation of a second sheet but
rather observe the breaking of a sheet into two
symmetric sheets. This symmetry comes from the
left-right symmetry of the image of the energy-
momentum map. A point in the light grey domain
is associated with one regular torus T2 whereas a
point in the dark grey domain is associated with
two different regular torus T2 ∪ T2. The continu-
ity argument among the tori of case I is employed
again to define two different sheets: a first sheet
that covers the whole Fig. 10(c) and a second one
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that covers the dark grey domain. The preimage
of a point in the upper boundary (dashed curve) of
the second sheet is a locally bitorus-like fiber. The
preimage of a point in the lower boundary of the
second sheet is a S1 circle. Figures 10(b-c) show
that these upper and lower boundaries intersect for
λ ≥ 0 and the preimage of the intersection point is
a locally cuspidal-like torus.

We conclude that in case II as λ becomes pos-

itive, the domain with two sheets breaks into two

symmetric domains with two sheets each.

D. Structural stability

The effects of a fold catastrophe in a one-
dimensional effective potential were discussed in
III B and III C. We now prove that the phe-
nomenon is structurally stable and persists under
a small perturbation of the system, which is a re-
quirement for this phenomenon to be of physical
importance.

1. Family of effective potentials

We consider a family of one-dimensional effec-
tive potentials depending on the variable ρ and two
parameters: m2 and λ:

Veff(ρ; m; λ) = V0(ρ) +
m2

2ρ2
+ λF (ρ), (12)

where V0(ρ) is the potential of the system and F
is a function.

We suppose that a degenerate critical point oc-
curs at (ρ = ρ0, m = 0, λ = 0) and we accordingly
rewrite the potential as:

Veff(ρ; m; λ) = V0(ρ0)+(ρ−ρ0)
3W (ρ)+

m2

2ρ2
+λF (ρ),

with W (ρ0) 6= 0. The constant V0(ρ0) is nonessen-
tial and may be dropped.

For λ nonzero, we find the position of the de-
generate critical point and the angular momentum
using a Newton’s method:







ρdeg = ρ0 −
3 dF

dρ
(ρ0)+ρ0

d2F

dρ2
(ρ0)

6ρ0W (ρ0) λ + O(λ2),

m2
deg = ρ3

0
dF
dρ

(ρ0)λ + O(λ2).

For small enough λ, the sign of m2
deg is the same

as dF
dρ

(ρ0)λ. We suppose dF
dρ

(ρ0) is positive. We

can always redefine the external parameter λ and
the external function F if this does not hold. When
λ is negative, no cuspidal points can exist whereas
two cuspidal points exist for m 6= 0 for positive λ.

2. Perturbation

We consider equivariant perturbations, that is,
perturbative functions that have the axial symme-
try of the original problem and add a perturbative
term to the effective potential. Catastrophe the-
ory establishes that one parameter is necessary and
sufficient for the fold catastrophe to occur in a fam-
ily of one-dimensional potentials. The existence of
this degenerate critical point is structurally sta-
ble: the fold catastrophe persists under a pertur-
bation of the potential whereas the values of the
parameter and the position of the singular point
are slightly changed.

The unperturbed effective one-dimensional po-
tential depends on one internal parameter m and
one external parameter λ. A degenerate criti-
cal point exists for the unperturbed local poten-
tial when both internal and external parameters
vanish. Keeping fixed the angular momentum at
m = 0, the perturbation merely shifts the position
of the degenerate critical point which appears at
λ = λ∗

deg. The qualitative description of the un-

folding of the fold catastrophe at (m = 0, λ = 0)
remains valid at (m = 0, λ = λ∗

deg). The phenom-
ena presented in this paper are henceforth stable
under any small equivariant perturbation.

IV. FOLD CATASTROPHE IN OCTIC

POTENTIALS

A. Family of Hamiltonians

Section III discussed the local changes induced
by a fold catastrophe in the fibration of the phase
space for a family of axially symmetric Hamiltoni-
ans. This section deals with the consequences of a
fold catastrophe in a family of systems described
by Eq. (6) with an octic potential defined on the
real half-line:

Voct(ρ; µ) = ρ8 −
4

3

(

ρ2
2 + 2ρ2

1

)

ρ6

+2
(

2ρ2
1ρ

2
2 + ρ4

1 − µ
)

ρ4

−4ρ2
2

(

ρ4
1 − µ

)

ρ2. (13)

The potential is parameterized by a control pa-
rameter µ and two positive constants ρ1 and ρ2.
Table II lists the relative equilibria of the system
for m = 0 (extrema of the potential Voct) and it
can be inferred from the appearance of two new
critical points for µ ≥ 0 that a cusp catastrophe
occurs in this family of potentials at ρ = ρ1. This
behavior with increasing control parameter is the
same as the one observed on Fig. 4 with the poten-

tial V loc,−
eff and vanishing angular momentum but

reverses the sequence of events obtained in Fig. 8
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FIG. 10: Images of the energy-momentum map in case II. The preimage of a point in the light grey areas is one
torus while the preimage of a point in the dark grey areas consists of two tori. Selected points in the image of
the energy-momentum map are marked by a cross and the figures attached to them show the effective potential
(dashed curve), the energy (horizontal dashed curve), and the conjugate momenta pρ (solid curve). (a) Control
parameter λ = −0.1. (b) Control parameter λ = 0. (c) Control parameter λ = 0.1.
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from V loc,+
eff . We should expect in this second sit-

uation the breaking of the second sheet when the
control parameter decreases.

TABLE II: Positions of the extrema of the octic poten-
tial Voct defined in Eq. (13).

Sign of µ Positions of extrema

µ < 0 0, ρ2

µ = 0 0, ρ2, ρ1, ρ1

µ > 0 0, ρ2,
q

ρ2
1 −

√
µ,

q

ρ2
1 +

√
µ

The potential Voct is expanded in Taylor series
at ρ = ρ1 as:

Voct(ρ; µ) = V0 + V1 (ρ − ρ1) + V2 (ρ − ρ1)
2

+V3 (ρ − ρ1)
3

+ O
(

(ρ − ρ1)
4
)

,(14)

with

V0 =
1

3
ρ6
1

(

ρ2
1 − 4ρ2

2

)

− 2µρ2
1

(

ρ2
1 − 2ρ2

2

)

,(15a)

V1 = −8µρ1 (ρ1 − ρ2) (ρ1 + ρ2) , (15b)

V2 = 4µ
(

ρ2
2 − 3ρ2

1

)

, (15c)

V3 =
32

3
ρ3
1 (ρ1 − ρ2) (ρ1 + ρ2) − 8µρ1. (15d)

The terms V1 and V2 in front of the linear and
quadratic terms of the Taylor expansion are pro-
portional to the control parameter µ. These two
terms vanish at µ = 0 and the potential Voct has
a degenerate critical point at ρ = ρ1. Catastrophe
theory states the existence of a nonlinear transfor-
mation that casts Eq. (14) in the canonical form

V0 ± (ρ̃ − ρ̃0)
3

+ λ(µ, V1, V2, V3, · · · ) (ρ̃ − ρ̃0) of a
fold catastrophe, where λ is a function of the pa-
rameter µ and of the coefficients Vi. The potential
Voct is defined on the real half-line and the two
possible signs in front of the cubic term are there-
fore inequivalent. The sign of ρ1 − ρ2 determines
the sign of V3 in front of the cubic term of Eq. (14)
for µ small enough and discriminates between the
two cases of Section III.

B. Monodromy

A noteworthy feature of the family of potentials
Voct is its behavior near the origin ρ = 0. The
quadratic term dominates and is negative for µ
small enough, which makes this potential locally
similar to the so-called bottle champagne or Mex-
ican hat potential [11, 12]. The value (m = 0, h =
0) is a singular value of the energy-momentum map
and its preimage is a pinched torus. This singu-
lar fiber makes impossible the global definition of
action-angle variables and induces a local defect

in the lattice of quantum eigenstates. The rest of
the paper focuses on the dynamics for negative en-
ergies only. The image of the energy-momentum
map for a control parameter µ is noted Dµ and
the restriction to negative energy values defines the
subset Dµ,h<0 = {(m, h)|(m, h) ∈ Dµ, h < 0}.

C. Case ρ2 > ρ1: appearance of a second sheet

We first deal with the situation where ρ2 > ρ1.
Figure 11 shows, for three different values of the
control parameter µ, the image of the energy-
momentum map and the octic potential Voct. The
small dots represent the lattice of quantum eigen-
states obtained by solving the time-independent
Schrödinger equation in a two-dimensional har-
monic oscillator basis [12, 40]. The Heisenberg un-
certainty and the zero-point energy imply that this
joint spectrum is completely inside the classical do-
main of the energy-momentum map. The succes-
sion of events occurring in Dµ,h<0 with increasing
µ is the same as the local model of Eq. (9a). All
the values in Dµ,h<0 are regular when the control
parameter is negative and corresponds quantum
mechanically to the regularity of the lattice in this
region.

The open circle in Fig. 11(b) corresponds to the
singular value originating from the fold catastro-
phe which appears when the control parameter
vanishes. The enlargement of an open set con-
taining this singularity is pictured on Fig. 12(a).
The displacement of an elementary cell around this
singularity indicates that the final cell can be su-
perposed to the initial cell and is related to the
absence of monodromy in Dµ,h<0. Fig. 11(c) is
marked by the presence of a second sheet in the
positive control parameter case. The point-like sin-
gularity has become a singular line and once again
the displacement on an elementary cell around this
line in Fig. 12(b) proves that there is no mon-
odromy in Dµ,h<0. The appearance of a second
sheet in Dµ,h<0 does not alter the regularity of the
quantum lattice.

D. Case ρ2 < ρ1: reversed breaking of the

second sheet

We now deal with the situation where ρ2 < ρ1.
The joint spectra of the quantum system super-
posed on the image of the energy-momentum maps
are drawn on Fig. 13 for three different values of
the parameter µ. The three insets represent the
one-dimensional potential Voct for the correspond-
ing values of the control parameter. The number
of extrema increases from one to three via a fold
catastrophe at µ = 0. The possible monodromy
is usually searched for with a closed loop that en-
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FIG. 11: Images of the energy-momentum map ob-
tained from the octic potential Voct [Eq. (13)] for
ρ1 = 1.0 and ρ2 = 1.5. The joint spectrum of com-
muting observables is represented by small dots and is
determined with the Planck constant set to ~ = 0.05.
The insets shows the octic potential Voct. (a) Control
parameter µ = −0.1. (b) Control parameter µ = 0.
The dashed rectangle delimits the area that is enlarged
in Fig. 12(a). (c) Control parameter µ = 0.1. The
dashed rectangle delimits the area that is enlarged in
Fig. 12(b).

circles a singularity and which passes through only
regular values in Dµ,h<0. Such a loop is impossible
to construct for any of the three energy-momentum
maps of Fig. 13 and the concept of monodromy is
not relevant for the case ρ2 < ρ1.

Fig. 13(a) has nevertheless interesting proper-
ties and an enlargement of the energy-momentum
map between m = 2.1 and m = 2.6 is presented on
Fig. 14(a) where a shift of the energy scale by a lin-
ear function of m has been performed. The points
in the light grey region of the image of the energy-
momentum map lift up to one torus while the
points in the dark grey region lift up to two tori.
A similar figure has been discussed by Sadovskií
and Zhilinskií in relation with the manifestation of
bidromy, see Fig. 18 of Ref. [41]. Figures 14(b-k)
show the effective potential, the energy, and the
radial momentum ±pρ(ρ) for ten (m, h) selected
points. The plot of the radial momentum as a
function of the radial coordinate gives a good indi-
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FIG. 12: (a) Enlargement of Fig. 11(b) in the vicinity
of the singularity. (b) Enlargement of the two sheets
seen on Fig. 11(c).

cation of the shape of the torus. We consider now
a continuous transformation of tori while travel-
ing counterclockwise on the loop represented on
Fig. 14(a): it begins from the point attached to
Fig. 14(b) and terminates at the point attached to
Fig. 14(k). These two points are identical in the
image of the energy-momentum map but a com-
parison between Fig. 14(b) and Fig. 14(k) reveals
that we can continuously pass from the torus on
the right of Fig. 14(b) (the torus where the radial
coordinate is higher) to the torus on the left.

We start with the point attached to Fig. 14(b)
from the torus located at the right and move con-
tinuously on the loop. The torus on the left gets
smaller until the point attached with Fig. 14(c)
is met where this torus finally degenerates to a
S1 circle in the phase space. The points attached
with Figs. 14(d-i) are in the light grey domain of
Fig. 14(a) and only one torus appears on each of
Figs. 14(d-i). Figure 14(j) is marked by the ap-
pearance of a circle in the phase space which de-
velops afterwards as a second torus. Comparing
Fig. 14(b) and Fig. 14(k), we see that one of the
two torus has been continuously transformed to the
other one. Two regular quantum lattices are super-
posed in the dark grey region and the continuous
loop presented above indicates that it is possible
to pass from one lattice into the other one, which
means that these two parts belong to the same reg-
ular self-overlapping lattice.
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FIG. 13: Images of the energy-momentum map ob-
tained from the octic potential Voct [Eq. (13)] for
ρ1 = 1.5 and ρ2 = 1.0. The joint spectrum of com-
muting observables is represented by small dots and is
determined with the Planck constant set to ~ = 0.05.
The insets shows the octic potential Voct. (a) Control
parameter µ = −0.1. The dashed curves delimits the
area that is enlarged in Fig. 14. (b) Control parameter
µ = 0. (c) Control parameter µ = 0.1.

V. CONCLUSION

This paper presents the consequences of a fold
catastrophe occurring in the potential of an axi-
ally symmetric system with one external parame-
ter. The foliation of the phase space by tori is in-
vestigated for the two inequivalent canonical forms
of the fold catastrophe. The first local model im-
plies the appearance of a second sheet in the im-
age of the energy-momentum map while the second
model involves the symmetric breaking of a second
sheet. The sequence of events in the second case
is not the reverse seen for the first case. A family
of systems with an octic potential is used to illus-
trate the phenomena. The proposed Hamiltonian
contains the two local models. The relationship
between the singularity induced by the fold catas-
trophe and the regularity of the joint spectrum
is investigated, with an emphasis on the possible
manifestation of monodromy. The displacement of
an elementary cell around the singularity and the
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FIG. 14: (a) Enlargement of Fig. 13(a). The quantum
eigenstates have been determined with the Planck con-
stant ~ = 0.005. The energy axis is shifted by a linear
function ∆h of the angular momentum m: ∆h(m) =
1.6m − 9.06. (b-k) Effective potential (dashed curve),
energy (horizontal dashed line) and radial momentum
±pρ(ρ) (solid curves) are drawn for ten representative
points in the image of the energy-momentum map. The
small filled circles represent ±pρ(ρ) curves reduced to
one point. The evolution of a torus from panel (b) to
panel (k) is seen in the continuous curves. Panels (b)
and (k) have two regular tori: one is drawn as a con-
tinuous curve and the other one is drawn as a dotted
curve.

absence of deformation between the initial and the
final cell proves in the first case that the fold catas-
trophe singularity does not induce monodromy. In
the second case, no closed loop around a singularity
can be defined and the concept of monodromy is
irrelevant. There is however a domain in the image
of the energy-momentum map where the preimage
of a regular point consists of two tori and it is pos-
sible to continuously transform one torus to the
other one.

The concomitant existence of two sheets and
monodromy in some previous studied systems is
only an fortuitous accident. This paper defini-
tively shows that the singularity induced by the
fold catastrophe can be the cause of the existence
of two sheets of regular values but does not intro-
duce monodromy in the system.

The results presented in this paper illustrate one
type of change with respect to the number of sheets
in the image of the energy-momentum map but nu-
merous other possibilities exist. It is known that
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several sheets appear as well in the image of the
energy-momentum map of the three-dimensional
ellipsoid with distinct semi-axes [42] and a system-
atic description of the possible modifications of the
number of sheets would certainly be worthwhile.
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