SYMMETRY

. Symmetry operations.
. Symmetry groups.

. Group actions, invariants, covariants.

. Generating functions applications.

. Symmetry breaking and spontaneous symmetry breaking.

. Curie principle.




Symmetry operations

Reflection, o op
Rotation C,, -over2m/n
Rotation-reflection S,,, S, =1, < -Iinversion.
Translation xT—T+0
Timereversal t— —t
Permutation of identical particles
Color transformation

Charge conjugation



Why some objects are more symmetric than others? Compaoché#ne
the table, the tetrahedron, the cube and the sphere.







Rotation and rotation—reflexion axes for tetrahedron etfiie.




Composition of symmetry operations
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GROUP

A group is a set of elements named symmetry operations

G:{gi=F,g2,...,9N},

with the law of composition :

. gig; 1s defined and belongs 14,

. the law of composition is associative,(g;g;)gx = gi(gig),
In general it is not commutative g;g; # g9,

. there exists an element unify, such that FEg; = g; = ¢; F,
all g, € G,

. each element g; € G has an inverse element(g;)*,
9i(9:)" = E = (9:)" "9




Figure withC, symmetry used in psychological tests.




Figures with 2D-symmetry grou@,,, n = 2, 3,4
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Examples of 2D-symmetry groups.







Ci

3-D symmetry group.




Group action. Orbits. Stabllizers.

C, (@

Action of groupC’,, on 2-D space.

The stabilizer and the number of points in orbit are indidate




/

D; (1)

(:)

D¢ action D> action




D5 action




Orbits of Cy4,, (D,) action.

Stabilizer - 1 point
Stabilizer 4 points
Stabilizer 4 points
Stabilizer 8 points










List of 3-D finite point groups

CTM 82n1 Cn’U! Cnh1 DTM Dnd1 Dnh;

T, Ty Ty O, O I 14




Dynamical applications of orbits and strata

Stratum- collection of orbits of the same type (with equivalent
stabilizer).

Theorem (Michel, 1971).In the smooth action of a compact (or finite)
groupG on a finite-dimensional manifoldll , the gradient of every

G -invariant functions vanishes on the orbathich are isolated in their
strata These orbits are calladitical.




Orbits and strata for the action 6f;, symmetry group on the
two-dimensional sphere.

Stabilizer Number of points Number of orbits Comments
per orbit per stratum
6 1 Critical
8
12

Critical
Critical

1

1
24 00 Open
24 00

Open

48 002 Generic




Exercises

1. What molecules among ABA>Bs3, A3Bs, A4B3, AsBs, AgB3 can be
characterized by the equilibrium configuration of symméetry?

2. Can equilibrium configuration of ABmolecule be characterized by
Symmetry grochll C21 C31 C41 CS! Ci! C2’l)1 C2h1 C3’U! C4’U1 D31
D3y, Ty ?

3. Find the symmetry operations for this artificial flower




4. Radilaria are found as zooplankton throughout the ocElaere are a
number of species whose skeleton is formed by hexagons artagoss.

Find the number of pentagons.

| . ) 2 .
D A.actinota Abi921 0

polar biclogy pl1 f10

1. Is it possible to cover the surface of the sphere with hemagnly?

2. Let the lattice on the sphere be formed by hexagons, pemsagnd
heptagons. Find restrictions on the possible number of reifft

polygons.




5. Let us suppose that instead of sphere we have a torus.

1. Is it possible to construct on the surface of torus a lfticmed by
hexagons only?

2. If the lattice on the surface of torus is formed by pentagon
hexagons, and heptagons what is the restriction on the nuoshbe

different polygons?

6. Find the number of hexagons and pentagons for the Morocamslan toy.




Generating functions for invariants
1-D symmetry group r — —=x
Variablex is not invariant under the group action.
z? is invariant under the group action.
What is the number of invariants in each degree, that can h&tcaeted?

The obvious answer can be written in terms of generatingtiomc

1
1 -t

_ 2n 2 4
2_275 —1+2+t*+...

n=0

There is one invariant in each non-negative even degree.
Arbitrary invariant can be written as a polynomialaf: P(x?)




3-D inversion symmetry group {z,y,z} — {—z,—y, —z}.

It is possible to construct 6 quadratic invariants :

2 .2 2
LY 2, XY, Y=, Iz,

Generating function for invariants:

1 4 3t2

—14+6t%+15t* + 2815 + ...
(EEE + 6t° + + +

or in more detailed form depending on three auxiliary vdaab

L+ t1t2 + t1t3 + tats
(T —t9)(1 —t5)(1 —t3)

Arbitrary invariant polynomial has the form :

Po(z?, 9%, 2%) + zyP1 (2,47, 2°) + yzP(2°, y?, 2°) + 22P(2°, y°, 2°)




O;, cubic group action on three spatial variabley, =.

1
(1 —1¢2)(1 —t*)(1 — %)

Symbolic meaning : there are three invariant polynomiaigf® of
degree 2, oné, of degree 4, and ong; of degree 6.

Arbitrary invariant is a polynomial P(65, 0y, 6)




Examples of group actions and spaces of orbits.

One-dimensional motion under presence&Zgfsymmetry.

Symmetry group action(x) — (—z).
In coordinate space = 0 is the only one-point orbit. It igritical.
All other orbits includes two pointsxy with z #= 0.

Space of orbits is a ray.

X X
@ @

configuration space space of orbits

x = 0 Is always a stationary point. If there is stationary point at 0
there are necessarily two equivalent stationary points.

Going froma = 0 minimum to minimum at: # 0 corresponds to
spontaneous symmetry breaking phenomenon.
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Characteristic features ofspontaneous symmetry breaking

Symmetry of the problem is not changed.

Symmetry of solution is changed (decreased).

The number of solutions increases.




Political cartoon ca. 1900, showing the United States Cesgjas
Buridan’s ass, hesitating between a Panama route or a Nitaraute for
an Atlantic-Pacific canal.




H atom Central perturbation Axial perturbation

Schematic representation of the degeneracy splitting @fdgen atom
levels due to symmetry breaking.




Dooh Cooh Coov

Examples of realization of axial symmetry groups.
Non-deformed cylinder B;,; twist cylinder -D;
rotating cylinder -C..;,; cylinder with axis asymmetry €.,

Electric field- C'., Magnetic field- C'.},




Table 1: Analogy between Magnus effect and Hall effect.

Hydrodynamics Electromagnetism

Rotating cylinder Magnetic field
Uniform hydrodynamic flow Electric current
Force acting on cylinder Force acting on conductor

Magnus effect Hall effect




Slides for lectures 4 - 5 are available at

http://purple.univ-littoral.fr&~boris/KyotoLect4.pdf




